A new approach to Hom-left-symmetric bialgebras
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 321-333.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The main purpose of this paper is to consider a new definition of Hom-left-symmetric bialgebra. The coboundary Hom-left-symmetric bialgebra is also studied. In particular, we give a necessary and sufficient condition that $s$-matrix is a solution of the Hom-$S$-equation by a cocycle condition.
DOI : 10.21136/CMJ.2021.0238-19
Classification : 17A30, 17B60, 81R12
Keywords: Hom-left-symmetric algebra; Hom-$S$-equation; Hom-left-symmetric bialgebra
@article{10_21136_CMJ_2021_0238_19,
     author = {Sun, Qinxiu and Lou, Qiong and Li, Hongliang},
     title = {A new approach to {Hom-left-symmetric} bialgebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {321--333},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2021},
     doi = {10.21136/CMJ.2021.0238-19},
     mrnumber = {4263172},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0238-19/}
}
TY  - JOUR
AU  - Sun, Qinxiu
AU  - Lou, Qiong
AU  - Li, Hongliang
TI  - A new approach to Hom-left-symmetric bialgebras
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 321
EP  - 333
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0238-19/
DO  - 10.21136/CMJ.2021.0238-19
LA  - en
ID  - 10_21136_CMJ_2021_0238_19
ER  - 
%0 Journal Article
%A Sun, Qinxiu
%A Lou, Qiong
%A Li, Hongliang
%T A new approach to Hom-left-symmetric bialgebras
%J Czechoslovak Mathematical Journal
%D 2021
%P 321-333
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0238-19/
%R 10.21136/CMJ.2021.0238-19
%G en
%F 10_21136_CMJ_2021_0238_19
Sun, Qinxiu; Lou, Qiong; Li, Hongliang. A new approach to Hom-left-symmetric bialgebras. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 321-333. doi : 10.21136/CMJ.2021.0238-19. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0238-19/

Cité par Sources :