Keywords: Hom-left-symmetric algebra; Hom-$S$-equation; Hom-left-symmetric bialgebra
@article{10_21136_CMJ_2021_0238_19,
author = {Sun, Qinxiu and Lou, Qiong and Li, Hongliang},
title = {A new approach to {Hom-left-symmetric} bialgebras},
journal = {Czechoslovak Mathematical Journal},
pages = {321--333},
year = {2021},
volume = {71},
number = {2},
doi = {10.21136/CMJ.2021.0238-19},
mrnumber = {4263172},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0238-19/}
}
TY - JOUR AU - Sun, Qinxiu AU - Lou, Qiong AU - Li, Hongliang TI - A new approach to Hom-left-symmetric bialgebras JO - Czechoslovak Mathematical Journal PY - 2021 SP - 321 EP - 333 VL - 71 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0238-19/ DO - 10.21136/CMJ.2021.0238-19 LA - en ID - 10_21136_CMJ_2021_0238_19 ER -
%0 Journal Article %A Sun, Qinxiu %A Lou, Qiong %A Li, Hongliang %T A new approach to Hom-left-symmetric bialgebras %J Czechoslovak Mathematical Journal %D 2021 %P 321-333 %V 71 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0238-19/ %R 10.21136/CMJ.2021.0238-19 %G en %F 10_21136_CMJ_2021_0238_19
Sun, Qinxiu; Lou, Qiong; Li, Hongliang. A new approach to Hom-left-symmetric bialgebras. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 321-333. doi: 10.21136/CMJ.2021.0238-19
[1] Bai, C.: Left-symmetric bialgebras and an analogue of the classical Yang-Baxter equation. Commun. Contemp. Math. 10 (2008), 221-260. | DOI | MR | JFM
[2] Benayadi, S., Makhlouf, A.: Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms. J. Geom. Phys. 76 (2014), 38-60. | DOI | MR | JFM
[3] Hartwig, J. T., Larsson, D., Silvestrov, S. D.: Deformations of Lie algebras using $\sigma$-derivations. J. Algebra 295 (2006), 314-361. | DOI | MR | JFM
[4] Liu, S., Song, L., Tang, R.: Representations and cohomologies of Hom-pre-Lie algebras. Available at , 18 pages. | arXiv
[5] Makhlouf, A., Silvestrov, S. D.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2 (2008), 51-64. | DOI | MR | JFM
[6] Sheng, Y., Bai, C.: A new approach to Hom-Lie bialgebras. J. Algebra 399 (2014), 232-250. | DOI | MR | JFM
[7] Sheng, Y., Chen, D.: Hom-Lie 2-algebras. J. Algebra 376 (2013), 174-195. | DOI | MR | JFM
[8] Sun, Q., Li, H.: On parakähler Hom-Lie algebras and Hom-left-symmetric bialgebras. Commun. Algebra 45 (2017), 105-120. | DOI | MR | JFM
[9] Yau, D.: The Hom-Yang-Baxter equation, Hom-Lie algebras, and quasi-triangular bialgebras. J. Phys. A, Math. Theor. 42 (2009), Article ID 165202, 12 pages. | DOI | MR | JFM
[10] Yau, D.: Hom-Novikov algebras. J. Phys. A, Math. Theor. 44 (2011), Article ID 085202, 20 pages. | DOI | MR | JFM
[11] Yau, D.: The Hom-Yang-Baxter equation and Hom-Lie algebras. J. Math. Phys. 52 (2011), Article ID 053502, 19 pages. | DOI | MR | JFM
[12] Yau, D.: The classical Hom-Yang-Baxter equation and Hom-Lie bialgebras. Int. Electron. J. Algebra 17 (2015), 11-45. | DOI | MR | JFM
[13] Zhang, R., Hou, D., Bai, C.: A Hom-version of the affinizations of Balinskii-Novikov and Novikov superalgebras. J. Math. Phys. 52 (2011), Article ID 023505, 19 pages. | DOI | MR | JFM
Cité par Sources :