A characterization of sets in ${\mathbb R}^2$ with DC distance function
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 1-38
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give a complete characterization of closed sets $F \subset {\mathbb R}^2$ whose distance function $d_F:= {\rm dist}(\cdot ,F)$ is DC (i.e., is the difference of two convex functions on ${\mathbb R}^2$). Using this characterization, a number of properties of such sets is proved.
We give a complete characterization of closed sets $F \subset {\mathbb R}^2$ whose distance function $d_F:= {\rm dist}(\cdot ,F)$ is DC (i.e., is the difference of two convex functions on ${\mathbb R}^2$). Using this characterization, a number of properties of such sets is proved.
DOI : 10.21136/CMJ.2021.0228-20
Classification : 26B25
Keywords: distance function; DC function; subset of ${\mathbb R}^2$
@article{10_21136_CMJ_2021_0228_20,
     author = {Pokorn\'y, Du\v{s}an and Zaj{\'\i}\v{c}ek, Lud\v{e}k},
     title = {A characterization of sets in ${\mathbb R}^2$ with {DC} distance function},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--38},
     year = {2022},
     volume = {72},
     number = {1},
     doi = {10.21136/CMJ.2021.0228-20},
     mrnumber = {4389104},
     zbl = {07511551},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0228-20/}
}
TY  - JOUR
AU  - Pokorný, Dušan
AU  - Zajíček, Luděk
TI  - A characterization of sets in ${\mathbb R}^2$ with DC distance function
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1
EP  - 38
VL  - 72
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0228-20/
DO  - 10.21136/CMJ.2021.0228-20
LA  - en
ID  - 10_21136_CMJ_2021_0228_20
ER  - 
%0 Journal Article
%A Pokorný, Dušan
%A Zajíček, Luděk
%T A characterization of sets in ${\mathbb R}^2$ with DC distance function
%J Czechoslovak Mathematical Journal
%D 2022
%P 1-38
%V 72
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0228-20/
%R 10.21136/CMJ.2021.0228-20
%G en
%F 10_21136_CMJ_2021_0228_20
Pokorný, Dušan; Zajíček, Luděk. A characterization of sets in ${\mathbb R}^2$ with DC distance function. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 1-38. doi: 10.21136/CMJ.2021.0228-20

[1] Bačák, M., Borwein, J. M.: On difference convexity of locally Lipschitz functions. Optimization 60 (2011), 961-978. | DOI | MR | JFM

[2] Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications 58. Birkhäuser, Boston (2004). | DOI | MR | JFM

[3] Duda, J.: Curves with finite turn. Czech. Math. J. 58 (2008), 23-49. | DOI | MR | JFM

[4] Folland, G. B.: Real Analysis: Modern Techniques and Their Applications. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts. John Wiley & Sons, New York (1999). | MR | JFM

[5] Fu, J. H. G.: Integral geometric regularity. Tensor Valuations and Their Applications in Stochastic Geometry and Imaging Lecture Notes in Mathematics 2177. Springer, Cham (2017), 261-299 \99999DOI99999 10.1007/978-3-319-51951-7_10 . | MR | JFM

[6] Fu, J. H. G., Pokorný, D., Rataj, J.: Kinematic formulas for sets defined by differences of convex functions. Adv. Math. 311 (2017), 796-832. | DOI | MR | JFM

[7] Hartman, P.: On functions representable as a difference of convex functions. Pac. J. Math. 9 (1959), 707-713. | DOI | MR | JFM

[8] Pokorný, D., Rataj, J.: Normal cycles and curvature measures of sets with d.c. boundary. Adv. Math. 248 (2013), 963-985. | DOI | MR | JFM

[9] Pokorný, D., Rataj, J., Zajíček, L.: On the structure of WDC sets. Math. Nachr. 292 (2019), 1595-1626. | DOI | MR | JFM

[10] Pokorný, D., Zajíček, L.: On sets in $\mathbb R^d$ with DC distance function. J. Math. Anal. Appl. 482 (2020), Article ID 123536, 14 pages. | DOI | MR | JFM

[11] Pokorný, D., Zajíček, L.: Remarks on WDC sets. Commentat. Math. Univ. Carol. 62 (2021), 81-94. | DOI | MR

[12] Roberts, A. W., Varberg, D. E.: Convex Functions. Pure and Applied Mathematics 57. Academic Press, New York (1973). | MR | JFM

[13] Saks, S.: Theory of the Integral. Dover Publications, New York (1964). | MR | JFM

[14] Shapiro, A.: On concepts of directional differentiability. J. Optimization Theory Appl. 66 (1990), 477-487. | DOI | MR | JFM

[15] Tuy, H.: Convex Analysis and Global Optimization. Springer Optimization and Its Applications 110. Springer, Cham (2016). | DOI | MR | JFM

[16] Veselý, L., Zajíček, L.: Delta-convex mappings between Banach spaces and applications. Diss. Math. 289 (1989), 48 pages. | MR | JFM

[17] Veselý, L., Zajíček, L.: On vector functions of bounded convexity. Math. Bohem. 133 (2008), 321-335. | DOI | MR | JFM

[18] Willard, S.: General Topology. Addison-Wesley Series in Mathematics. Addison-Wesley Publishing, Reading (1970). | MR | JFM

Cité par Sources :