A characterization of sets in ${\mathbb R}^2$ with DC distance function
Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 1-38.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We give a complete characterization of closed sets $F \subset {\mathbb R}^2$ whose distance function $d_F:= {\rm dist}(\cdot ,F)$ is DC (i.e., is the difference of two convex functions on ${\mathbb R}^2$). Using this characterization, a number of properties of such sets is proved.
DOI : 10.21136/CMJ.2021.0228-20
Classification : 26B25
Keywords: distance function; DC function; subset of ${\mathbb R}^2$
@article{10_21136_CMJ_2021_0228_20,
     author = {Pokorn\'y, Du\v{s}an and Zaj{\'\i}\v{c}ek, Lud\v{e}k},
     title = {A characterization of sets in ${\mathbb R}^2$ with {DC} distance function},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--38},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2022},
     doi = {10.21136/CMJ.2021.0228-20},
     mrnumber = {4389104},
     zbl = {07511551},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0228-20/}
}
TY  - JOUR
AU  - Pokorný, Dušan
AU  - Zajíček, Luděk
TI  - A characterization of sets in ${\mathbb R}^2$ with DC distance function
JO  - Czechoslovak Mathematical Journal
PY  - 2022
SP  - 1
EP  - 38
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0228-20/
DO  - 10.21136/CMJ.2021.0228-20
LA  - en
ID  - 10_21136_CMJ_2021_0228_20
ER  - 
%0 Journal Article
%A Pokorný, Dušan
%A Zajíček, Luděk
%T A characterization of sets in ${\mathbb R}^2$ with DC distance function
%J Czechoslovak Mathematical Journal
%D 2022
%P 1-38
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0228-20/
%R 10.21136/CMJ.2021.0228-20
%G en
%F 10_21136_CMJ_2021_0228_20
Pokorný, Dušan; Zajíček, Luděk. A characterization of sets in ${\mathbb R}^2$ with DC distance function. Czechoslovak Mathematical Journal, Tome 72 (2022) no. 1, pp. 1-38. doi : 10.21136/CMJ.2021.0228-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0228-20/

Cité par Sources :