5-dissections and sign patterns of Ramanujan's parameter and its companion
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1115-1128
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In 1998, Michael Hirschhorn discovered the 5-dissection formulas of the Rogers-Ramanujan continued fraction $R(q)$ and its reciprocal. We obtain the 5-dissections for functions $R(q)R(q^2)^2$ and $R(q)^2/R(q^2)$, which are essentially Ramanujan's parameter and its companion. Additionally, 5-dissections of the reciprocals of these two functions are derived. These 5-dissection formulas imply that the coefficients in their series expansions have periodic sign patterns with few exceptions.
In 1998, Michael Hirschhorn discovered the 5-dissection formulas of the Rogers-Ramanujan continued fraction $R(q)$ and its reciprocal. We obtain the 5-dissections for functions $R(q)R(q^2)^2$ and $R(q)^2/R(q^2)$, which are essentially Ramanujan's parameter and its companion. Additionally, 5-dissections of the reciprocals of these two functions are derived. These 5-dissection formulas imply that the coefficients in their series expansions have periodic sign patterns with few exceptions.
DOI : 10.21136/CMJ.2021.0218-20
Classification : 11F27, 30B10
Keywords: 5-dissection; sign pattern; Ramanujan's parameter
@article{10_21136_CMJ_2021_0218_20,
     author = {Chern, Shane and Tang, Dazhao},
     title = {5-dissections and sign patterns of {Ramanujan's} parameter and its companion},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1115--1128},
     year = {2021},
     volume = {71},
     number = {4},
     doi = {10.21136/CMJ.2021.0218-20},
     mrnumber = {4339114},
     zbl = {07442477},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0218-20/}
}
TY  - JOUR
AU  - Chern, Shane
AU  - Tang, Dazhao
TI  - 5-dissections and sign patterns of Ramanujan's parameter and its companion
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 1115
EP  - 1128
VL  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0218-20/
DO  - 10.21136/CMJ.2021.0218-20
LA  - en
ID  - 10_21136_CMJ_2021_0218_20
ER  - 
%0 Journal Article
%A Chern, Shane
%A Tang, Dazhao
%T 5-dissections and sign patterns of Ramanujan's parameter and its companion
%J Czechoslovak Mathematical Journal
%D 2021
%P 1115-1128
%V 71
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0218-20/
%R 10.21136/CMJ.2021.0218-20
%G en
%F 10_21136_CMJ_2021_0218_20
Chern, Shane; Tang, Dazhao. 5-dissections and sign patterns of Ramanujan's parameter and its companion. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1115-1128. doi: 10.21136/CMJ.2021.0218-20

[1] Andrews, G. E.: Ramanujan's ``lost'' notebook. III: The Rogers-Ramanujan continued fraction. Adv. Math. 41 (1981), 186-208 \99999DOI99999 10.1016/0001-8708(81)90015-3 . | DOI | MR | JFM

[2] Andrews, G. E., Berndt, B. C.: Ramanujan's Lost Notebook. I. Springer, New York (2005). | DOI | MR | JFM

[3] Chern, S., Tang, D.: Vanishing coefficients in quotients of theta functions of modulus five. Bull. Aust. Math. Soc. 102 (2020), 387-398. | DOI | MR | JFM

[4] Cooper, S.: On Ramanujan's function $k(q)=r(q)r^2(q^2)$. Ramanujan J. 20 (2009), 311-328. | DOI | MR | JFM

[5] Cooper, S.: Level 10 analogues of Ramanujan's series for $1/\pi$. J. Ramanujan Math. Soc. 27 (2012), 59-76. | MR | JFM

[6] Cooper, S.: Ramanujan's Theta Functions. Springer, Cham (2017). | DOI | MR | JFM

[7] Dou, D. Q. J., Xiao, J.: The 5-dissections of two infinite product expansions. (to appear) in Ramanujan J. | DOI

[8] Frye, J., Garvan, F.: Automatic proof of theta-function identities. Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory Texts and Monographs in Symbolic Computation. Springer, Cham (2019), 195-258. | DOI | MR

[9] Garvan, F.: A $q$-product tutorial for a $q$-series MAPLE package. Sémin. Lothar. Comb. 42 (1999), Article ID B42d, 27 pages. | MR | JFM

[10] Gugg, C.: Two modular equations for squares of the Rogers-Ramanujan functions with applications. Ramanujan J. 18 (2009), 183-207. | DOI | MR | JFM

[11] Hirschhorn, M. D.: On the expansion of Ramanujan's continued fraction. Ramanujan J. 2 (1998), 521-527. | DOI | MR | JFM

[12] Hirschhorn, M. D.: The Power of $q$: A Personal Journey. Developments in Mathematics 49. Springer, Cham (2017). | DOI | MR | JFM

[13] Kang, S.-Y.: Some theorems on the Rogers-Ramanujan continued fraction and associated theta function identities in Ramanujan's Lost Notebook. Ramanujan J. 3 (1999), 91-111. | DOI | MR | JFM

[14] Raghavan, S., Rangachari, S. S.: On Ramanujan's elliptic integrals and modular identities. Number Theory and Related Topics Tata Institute of Fundamental Research Studies in Mathematics 12. Oxford University Press, Oxford (1989), 119-149. | MR | JFM

[15] Ramanujan, S.: Notebooks of Srinivasa Ramanujan. II. Tata Institute of Fundamental Research, Bombay (1957). | DOI | MR | JFM

[16] Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Springer, Berlin; Narosa Publishing House, New Delhi (1988). | MR | JFM

[17] Richmond, B., Szekeres, G.: The Taylor coefficients of certain infinite products. Acta Sci. Math. 40 (1978), 347-369. | MR | JFM

[18] Rogers, L. J.: Second memoir on the expansion of certain infinite products. Proc. Lond. Math. Soc. 25 (1894), 318-343. | DOI | MR

[19] Tang, D.: On 5- and 10-dissections for some infinite products. (to appear) in Ramanujan J. | DOI

[20] Tang, D., Xia, E. X. W.: Several $q$-series related to Ramanujan's theta functions. Ramanujan J. 53 (2020), 705-724. | DOI | MR

[21] Xia, E. X. W., Zhao, A. X. H.: Generalizations of Hirschhorn's results on two remarkable $q$-series expansions. (to appear) in Exp. Math. | DOI

Cité par Sources :