A variety of Euler's sum of powers conjecture
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1099-1113
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider a variety of Euler's sum of powers conjecture, i.e., whether the Diophantine system $$ \begin{cases} n=a_{1}+a_{2}+\cdots +a_{s-1},\\ a_{1}a_{2}\cdots a_{s-1}(a_{1}+a_{2}+\cdots +a_{s-1})=b^{s} \end{cases} $$ has positive integer or rational solutions $n$, $b$, $a_i$, $i=1,2,\cdots ,s-1$, $s\geq 3.$ Using the theory of elliptic curves, we prove that it has no positive integer solution for $s=3$, but there are infinitely many positive integers $n$ such that it has a positive integer solution for $s\geq 4$. As a corollary, for $s\geq 4$ and any positive integer $n$, the above Diophantine system has a positive rational solution. Meanwhile, we give conditions such that it has infinitely many positive rational solutions for $s\geq 4$ and a fixed positive integer $n$.
DOI :
10.21136/CMJ.2021.0210-20
Classification :
11D41, 11D72, 11G05
Keywords: Euler's sum of powers conjecture; elliptic curve; positive integer solution; positive rational solution
Keywords: Euler's sum of powers conjecture; elliptic curve; positive integer solution; positive rational solution
@article{10_21136_CMJ_2021_0210_20,
author = {Cai, Tianxin and Zhang, Yong},
title = {A variety of {Euler's} sum of powers conjecture},
journal = {Czechoslovak Mathematical Journal},
pages = {1099--1113},
publisher = {mathdoc},
volume = {71},
number = {4},
year = {2021},
doi = {10.21136/CMJ.2021.0210-20},
mrnumber = {4339113},
zbl = {07442476},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0210-20/}
}
TY - JOUR AU - Cai, Tianxin AU - Zhang, Yong TI - A variety of Euler's sum of powers conjecture JO - Czechoslovak Mathematical Journal PY - 2021 SP - 1099 EP - 1113 VL - 71 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0210-20/ DO - 10.21136/CMJ.2021.0210-20 LA - en ID - 10_21136_CMJ_2021_0210_20 ER -
%0 Journal Article %A Cai, Tianxin %A Zhang, Yong %T A variety of Euler's sum of powers conjecture %J Czechoslovak Mathematical Journal %D 2021 %P 1099-1113 %V 71 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0210-20/ %R 10.21136/CMJ.2021.0210-20 %G en %F 10_21136_CMJ_2021_0210_20
Cai, Tianxin; Zhang, Yong. A variety of Euler's sum of powers conjecture. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1099-1113. doi: 10.21136/CMJ.2021.0210-20
Cité par Sources :