Keywords: Euler's sum of powers conjecture; elliptic curve; positive integer solution; positive rational solution
@article{10_21136_CMJ_2021_0210_20,
author = {Cai, Tianxin and Zhang, Yong},
title = {A variety of {Euler's} sum of powers conjecture},
journal = {Czechoslovak Mathematical Journal},
pages = {1099--1113},
year = {2021},
volume = {71},
number = {4},
doi = {10.21136/CMJ.2021.0210-20},
mrnumber = {4339113},
zbl = {07442476},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0210-20/}
}
TY - JOUR AU - Cai, Tianxin AU - Zhang, Yong TI - A variety of Euler's sum of powers conjecture JO - Czechoslovak Mathematical Journal PY - 2021 SP - 1099 EP - 1113 VL - 71 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0210-20/ DO - 10.21136/CMJ.2021.0210-20 LA - en ID - 10_21136_CMJ_2021_0210_20 ER -
Cai, Tianxin; Zhang, Yong. A variety of Euler's sum of powers conjecture. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1099-1113. doi: 10.21136/CMJ.2021.0210-20
[1] Cai, T., Chen, D.: A new variant of the Hilbert-Waring problem. Math. Comput. 82 (2013), 2333-2341. | DOI | MR | JFM
[2] Cai, T., Chen, D., Zhang, Y.: A new generalization of Fermat's last theorem. J. Number Theory 149 (2015), 33-45. | DOI | MR | JFM
[3] Cohen, H.: Number Theory. Vol. I: Tools and Diophantine Equations. Graduate Texts in Mathematics 239. Springer, New York (2007). | DOI | MR | JFM
[4] Elkies, N. D.: On $A^4+B^4+C^4=D^4$. Math. Comput. 184 (1988), 825-835. | DOI | MR | JFM
[5] Guy, R. K.: Unsolved Problems in Number Theory. Problem Books in Mathematics. Springer, New York (2004). | DOI | MR | JFM
[6] Lander, L. J., Parkin, T. R.: Counterexample to Euler's conjecture on sums of like powers. Bull. Am. Math. Soc. 72 (1966), 1079. | DOI | MR | JFM
[7] Magma computational algebra system for algebra, number theory and geometry. Available at http://magma.maths.usyd.edu.au/magma/
[8] Mordell, L. J.: Diophantine Equations. Pure and Applied Mathematics 30. Academic Press, London (1969). | MR | JFM
[9] Rowland, E. S.: Elliptic curve and integral solutions to $A^4+B^4+C^4=D^4$. (2004), 7 pages.
[10] Skolem, T.: Diophantische Gleichungen. Ergebnisse der Mathematik und ihrer Grenzgebiete 5. Springer, Berlin (1938), German. | JFM
[11] Ulas, M.: On some Diophantine systems involving symmetric polynomials. Math. Comput. 83 (2014), 1915-1930. | DOI | MR | JFM
Cité par Sources :