A variety of Euler's sum of powers conjecture
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1099-1113
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider a variety of Euler's sum of powers conjecture, i.e., whether the Diophantine system $$ \begin{cases} n=a_{1}+a_{2}+\cdots +a_{s-1},\\ a_{1}a_{2}\cdots a_{s-1}(a_{1}+a_{2}+\cdots +a_{s-1})=b^{s} \end{cases} $$ has positive integer or rational solutions $n$, $b$, $a_i$, $i=1,2,\cdots ,s-1$, $s\geq 3.$ Using the theory of elliptic curves, we prove that it has no positive integer solution for $s=3$, but there are infinitely many positive integers $n$ such that it has a positive integer solution for $s\geq 4$. As a corollary, for $s\geq 4$ and any positive integer $n$, the above Diophantine system has a positive rational solution. Meanwhile, we give conditions such that it has infinitely many positive rational solutions for $s\geq 4$ and a fixed positive integer $n$.
We consider a variety of Euler's sum of powers conjecture, i.e., whether the Diophantine system $$ \begin{cases} n=a_{1}+a_{2}+\cdots +a_{s-1},\\ a_{1}a_{2}\cdots a_{s-1}(a_{1}+a_{2}+\cdots +a_{s-1})=b^{s} \end{cases} $$ has positive integer or rational solutions $n$, $b$, $a_i$, $i=1,2,\cdots ,s-1$, $s\geq 3.$ Using the theory of elliptic curves, we prove that it has no positive integer solution for $s=3$, but there are infinitely many positive integers $n$ such that it has a positive integer solution for $s\geq 4$. As a corollary, for $s\geq 4$ and any positive integer $n$, the above Diophantine system has a positive rational solution. Meanwhile, we give conditions such that it has infinitely many positive rational solutions for $s\geq 4$ and a fixed positive integer $n$.
DOI : 10.21136/CMJ.2021.0210-20
Classification : 11D41, 11D72, 11G05
Keywords: Euler's sum of powers conjecture; elliptic curve; positive integer solution; positive rational solution
@article{10_21136_CMJ_2021_0210_20,
     author = {Cai, Tianxin and Zhang, Yong},
     title = {A variety of {Euler's} sum of powers conjecture},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1099--1113},
     year = {2021},
     volume = {71},
     number = {4},
     doi = {10.21136/CMJ.2021.0210-20},
     mrnumber = {4339113},
     zbl = {07442476},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0210-20/}
}
TY  - JOUR
AU  - Cai, Tianxin
AU  - Zhang, Yong
TI  - A variety of Euler's sum of powers conjecture
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 1099
EP  - 1113
VL  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0210-20/
DO  - 10.21136/CMJ.2021.0210-20
LA  - en
ID  - 10_21136_CMJ_2021_0210_20
ER  - 
%0 Journal Article
%A Cai, Tianxin
%A Zhang, Yong
%T A variety of Euler's sum of powers conjecture
%J Czechoslovak Mathematical Journal
%D 2021
%P 1099-1113
%V 71
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0210-20/
%R 10.21136/CMJ.2021.0210-20
%G en
%F 10_21136_CMJ_2021_0210_20
Cai, Tianxin; Zhang, Yong. A variety of Euler's sum of powers conjecture. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1099-1113. doi: 10.21136/CMJ.2021.0210-20

[1] Cai, T., Chen, D.: A new variant of the Hilbert-Waring problem. Math. Comput. 82 (2013), 2333-2341. | DOI | MR | JFM

[2] Cai, T., Chen, D., Zhang, Y.: A new generalization of Fermat's last theorem. J. Number Theory 149 (2015), 33-45. | DOI | MR | JFM

[3] Cohen, H.: Number Theory. Vol. I: Tools and Diophantine Equations. Graduate Texts in Mathematics 239. Springer, New York (2007). | DOI | MR | JFM

[4] Elkies, N. D.: On $A^4+B^4+C^4=D^4$. Math. Comput. 184 (1988), 825-835. | DOI | MR | JFM

[5] Guy, R. K.: Unsolved Problems in Number Theory. Problem Books in Mathematics. Springer, New York (2004). | DOI | MR | JFM

[6] Lander, L. J., Parkin, T. R.: Counterexample to Euler's conjecture on sums of like powers. Bull. Am. Math. Soc. 72 (1966), 1079. | DOI | MR | JFM

[7] Magma computational algebra system for algebra, number theory and geometry. Available at http://magma.maths.usyd.edu.au/magma/

[8] Mordell, L. J.: Diophantine Equations. Pure and Applied Mathematics 30. Academic Press, London (1969). | MR | JFM

[9] Rowland, E. S.: Elliptic curve and integral solutions to $A^4+B^4+C^4=D^4$. (2004), 7 pages.

[10] Skolem, T.: Diophantische Gleichungen. Ergebnisse der Mathematik und ihrer Grenzgebiete 5. Springer, Berlin (1938), German. | JFM

[11] Ulas, M.: On some Diophantine systems involving symmetric polynomials. Math. Comput. 83 (2014), 1915-1930. | DOI | MR | JFM

Cité par Sources :