A variety of Euler's sum of powers conjecture
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1099-1113.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider a variety of Euler's sum of powers conjecture, i.e., whether the Diophantine system $$ \begin{cases} n=a_{1}+a_{2}+\cdots +a_{s-1},\\ a_{1}a_{2}\cdots a_{s-1}(a_{1}+a_{2}+\cdots +a_{s-1})=b^{s} \end{cases} $$ has positive integer or rational solutions $n$, $b$, $a_i$, $i=1,2,\cdots ,s-1$, $s\geq 3.$ Using the theory of elliptic curves, we prove that it has no positive integer solution for $s=3$, but there are infinitely many positive integers $n$ such that it has a positive integer solution for $s\geq 4$. As a corollary, for $s\geq 4$ and any positive integer $n$, the above Diophantine system has a positive rational solution. Meanwhile, we give conditions such that it has infinitely many positive rational solutions for $s\geq 4$ and a fixed positive integer $n$.
DOI : 10.21136/CMJ.2021.0210-20
Classification : 11D41, 11D72, 11G05
Keywords: Euler's sum of powers conjecture; elliptic curve; positive integer solution; positive rational solution
@article{10_21136_CMJ_2021_0210_20,
     author = {Cai, Tianxin and Zhang, Yong},
     title = {A variety of {Euler's} sum of powers conjecture},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1099--1113},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2021},
     doi = {10.21136/CMJ.2021.0210-20},
     mrnumber = {4339113},
     zbl = {07442476},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0210-20/}
}
TY  - JOUR
AU  - Cai, Tianxin
AU  - Zhang, Yong
TI  - A variety of Euler's sum of powers conjecture
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 1099
EP  - 1113
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0210-20/
DO  - 10.21136/CMJ.2021.0210-20
LA  - en
ID  - 10_21136_CMJ_2021_0210_20
ER  - 
%0 Journal Article
%A Cai, Tianxin
%A Zhang, Yong
%T A variety of Euler's sum of powers conjecture
%J Czechoslovak Mathematical Journal
%D 2021
%P 1099-1113
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0210-20/
%R 10.21136/CMJ.2021.0210-20
%G en
%F 10_21136_CMJ_2021_0210_20
Cai, Tianxin; Zhang, Yong. A variety of Euler's sum of powers conjecture. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1099-1113. doi : 10.21136/CMJ.2021.0210-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0210-20/

Cité par Sources :