Keywords: algebraic connectivity; Fiedler vector; minimum degree
@article{10_21136_CMJ_2021_0198_20,
author = {Kim, Sooyeong and Kirkland, Steve},
title = {Fiedler vectors with unbalanced sign patterns},
journal = {Czechoslovak Mathematical Journal},
pages = {1071--1098},
year = {2021},
volume = {71},
number = {4},
doi = {10.21136/CMJ.2021.0198-20},
mrnumber = {4339112},
zbl = {07442475},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0198-20/}
}
TY - JOUR AU - Kim, Sooyeong AU - Kirkland, Steve TI - Fiedler vectors with unbalanced sign patterns JO - Czechoslovak Mathematical Journal PY - 2021 SP - 1071 EP - 1098 VL - 71 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0198-20/ DO - 10.21136/CMJ.2021.0198-20 LA - en ID - 10_21136_CMJ_2021_0198_20 ER -
%0 Journal Article %A Kim, Sooyeong %A Kirkland, Steve %T Fiedler vectors with unbalanced sign patterns %J Czechoslovak Mathematical Journal %D 2021 %P 1071-1098 %V 71 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0198-20/ %R 10.21136/CMJ.2021.0198-20 %G en %F 10_21136_CMJ_2021_0198_20
Kim, Sooyeong; Kirkland, Steve. Fiedler vectors with unbalanced sign patterns. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1071-1098. doi: 10.21136/CMJ.2021.0198-20
[1] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs. Universitext. Springer, New York (2012). | DOI | MR | JFM
[2] Cvetković, D., Rowlinson, P., Simić, S.: Spectral Generalizations of Line Graphs: On Graphs with Least Eigenvalue $-2$. London Mathematical Society Lecture Note Series 314. Cambridge University Press, Cambridge (2004). | DOI | MR | JFM
[3] Cvetković, D., Simić, S.: The second largest eigenvalue of a graph (a survey). Filomat 9 (1995), 449-472. | MR | JFM
[4] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298-305. | DOI | MR | JFM
[5] Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czech. Math. J. 25 (1975), 619-633. | DOI | MR | JFM
[6] Kirkland, S. J., Molitierno, J. J., Neumann, M., Shader, B. L.: On graphs with equal algebraic and vertex connectivity. Linear Algebra Appl. 341 (2002), 45-56. | DOI | MR | JFM
[7] Merris, R.: Degree maximal graphs are Laplacian integral. Linear Algebra Appl. 199 (1994), 381-389. | DOI | MR | JFM
[8] Merris, R.: Laplacian graph eigenvectors. Linear Algebra Appl. 278 (1998), 221-236. | DOI | MR | JFM
[9] Seidel, J. J.: Strongly regular graphs with $(-1,1,0)$ adjacency matrix having eigenvalue 3. Linear Algebra Appl. 1 (1968), 281-298. | DOI | MR | JFM
[10] Urschel, J. C., Zikatanov, L. T.: Spectral bisection of graphs and connectedness. Linear Algebra Appl. 449 (2014), 1-16. | DOI | MR | JFM
[11] Urschel, J. C., Zikatanov, L. T.: On the maximal error of spectral approximation of graph bisection. Linear Multilinear Algebra 64 (2016), 1972-1979. | DOI | MR | JFM
Cité par Sources :