On the distribution of $(k,r)$-integers in Piatetski-Shapiro sequences
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1063-1070
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A natural number $n$ is said to be a $(k,r)$-integer if $n=a^kb$, where $k>r>1$ and $b$ is not divisible by the $r$th power of any prime. We study the distribution of such $(k,r)$-integers in the Piatetski-Shapiro sequence $\{\lfloor n^c \rfloor \}$ with $c>1$. As a corollary, we also obtain similar results for semi-$r$-free integers.
A natural number $n$ is said to be a $(k,r)$-integer if $n=a^kb$, where $k>r>1$ and $b$ is not divisible by the $r$th power of any prime. We study the distribution of such $(k,r)$-integers in the Piatetski-Shapiro sequence $\{\lfloor n^c \rfloor \}$ with $c>1$. As a corollary, we also obtain similar results for semi-$r$-free integers.
DOI : 10.21136/CMJ.2021.0194-20
Classification : 11L07, 11N37
Keywords: $(k, r)$-integer; Piatetski-Shapiro sequence
@article{10_21136_CMJ_2021_0194_20,
     author = {Srichan, Teerapat},
     title = {On the distribution of $(k,r)$-integers  in {Piatetski-Shapiro} sequences},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1063--1070},
     year = {2021},
     volume = {71},
     number = {4},
     doi = {10.21136/CMJ.2021.0194-20},
     mrnumber = {4339111},
     zbl = {07442474},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0194-20/}
}
TY  - JOUR
AU  - Srichan, Teerapat
TI  - On the distribution of $(k,r)$-integers  in Piatetski-Shapiro sequences
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 1063
EP  - 1070
VL  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0194-20/
DO  - 10.21136/CMJ.2021.0194-20
LA  - en
ID  - 10_21136_CMJ_2021_0194_20
ER  - 
%0 Journal Article
%A Srichan, Teerapat
%T On the distribution of $(k,r)$-integers  in Piatetski-Shapiro sequences
%J Czechoslovak Mathematical Journal
%D 2021
%P 1063-1070
%V 71
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0194-20/
%R 10.21136/CMJ.2021.0194-20
%G en
%F 10_21136_CMJ_2021_0194_20
Srichan, Teerapat. On the distribution of $(k,r)$-integers  in Piatetski-Shapiro sequences. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1063-1070. doi: 10.21136/CMJ.2021.0194-20

[1] Cao, X., Zhai, W.: The distribution of square-free numbers of the form $[n^c]$. J. Théor. Nombres Bordx. 10 (1998), 287-299. | DOI | MR | JFM

[2] Cao, X., Zhai, W.: On the distribution of square-free numbers of the form $[n^c]$. II. Acta Math. Sin., Chin. Ser. 51 (2008), 1187-1194 Chinese. | MR | JFM

[3] Deshouillers, J.-M.: A remark on cube-free numbers in Segal-Piatetski-Shapiro sequences. Hardy-Ramanujan J. 41 (2018), 127-132. | MR | JFM

[4] Ivić, A.: The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function. A Wiley-Interscience Publication. John Wiley & Sons, New York (1985). | MR | JFM

[5] Piatetski-Shapiro, I. I.: On the distribution of prime numbers in sequences of the form $[f(n)]$. Mat. Sb., N.Ser. 33 (1953), 559-566 Russian. | MR | JFM

[6] Rieger, G. J.: Remark on a paper of Stux concerning squarefree numbers in non-linear sequences. Pac. J. Math. 78 (1978), 241-242. | DOI | MR | JFM

[7] Stux, I. E.: Distribution of squarefree integers in non-linear sequences. Pac. J. Math. 59 (1975), 577-584. | DOI | MR | JFM

[8] Subbarao, M. V., Suryanarayana, D.: On the order of the error function of the $(k,r)$integers. J. Number Theory 6 (1974), 112-123. | DOI | MR | JFM

[9] Zhang, M., Li, J.: Distribution of cube-free numbers with form $[n^c]$. Front. Math. China 12 (2017), 1515-1525. | DOI | MR | JFM

Cité par Sources :