On the powers of quasihomogeneous Toeplitz operators
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1049-1061
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present sufficient conditions for the existence of $p$th powers of a quasihomogeneous Toeplitz operator $T_{{\rm e}^{{\rm i} s\theta }\psi }$, where $\psi $ is a radial polynomial function and $p$, $s$ are natural numbers. A large class of examples is provided to illustrate our results. To our best knowledge those examples are not covered by the current literature. The main tools in the proof of our results are the Mellin transform and some classical theorems of complex analysis.
We present sufficient conditions for the existence of $p$th powers of a quasihomogeneous Toeplitz operator $T_{{\rm e}^{{\rm i} s\theta }\psi }$, where $\psi $ is a radial polynomial function and $p$, $s$ are natural numbers. A large class of examples is provided to illustrate our results. To our best knowledge those examples are not covered by the current literature. The main tools in the proof of our results are the Mellin transform and some classical theorems of complex analysis.
DOI : 10.21136/CMJ.2021.0193-20
Classification : 30-00, 30H20, 44A99, 47B35
Keywords: quasihomogeneous Toeplitz operator; Mellin transform
@article{10_21136_CMJ_2021_0193_20,
     author = {Bouhali, Aissa and Bendaoud, Zohra and Louhichi, Issam},
     title = {On the powers of quasihomogeneous {Toeplitz} operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1049--1061},
     year = {2021},
     volume = {71},
     number = {4},
     doi = {10.21136/CMJ.2021.0193-20},
     mrnumber = {4339110},
     zbl = {07442473},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0193-20/}
}
TY  - JOUR
AU  - Bouhali, Aissa
AU  - Bendaoud, Zohra
AU  - Louhichi, Issam
TI  - On the powers of quasihomogeneous Toeplitz operators
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 1049
EP  - 1061
VL  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0193-20/
DO  - 10.21136/CMJ.2021.0193-20
LA  - en
ID  - 10_21136_CMJ_2021_0193_20
ER  - 
%0 Journal Article
%A Bouhali, Aissa
%A Bendaoud, Zohra
%A Louhichi, Issam
%T On the powers of quasihomogeneous Toeplitz operators
%J Czechoslovak Mathematical Journal
%D 2021
%P 1049-1061
%V 71
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0193-20/
%R 10.21136/CMJ.2021.0193-20
%G en
%F 10_21136_CMJ_2021_0193_20
Bouhali, Aissa; Bendaoud, Zohra; Louhichi, Issam. On the powers of quasihomogeneous Toeplitz operators. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1049-1061. doi: 10.21136/CMJ.2021.0193-20

[1] Ahern, P., Čučković, Ž.: A theorem of Brown-Halmos type for Bergman space Toeplitz operators. J. Funct. Anal. 187 (2001), 200-210. | DOI | MR | JFM

[2] Cohen, A. M.: Numerical Methods for Laplace Transform Inversion. Numerical Methods and Algorithms 5. Springer, New York (2007). | DOI | MR | JFM

[3] Čučković, Ž., Rao, N. V.: Mellin transform, monomial symbols, and commuting Toeplitz operators. J. Funct. Anal. 154 (1998), 195-214. | DOI | MR | JFM

[4] Godement, R.: Analysis III. Analytic and Differential Functions, Manifolds and Riemann Surfaces. Universitext. Springer, Cham (2015). | DOI | MR | JFM

[5] Louhichi, I.: Powers and roots of Toeplitz operators. Proc. Am. Math. Soc. 135 (2007), 1465-1475. | DOI | MR | JFM

[6] Louhichi, I., Rao, N. V.: Roots of Toeplitz operators on the Bergman space. Pac. J. Math. 252 (2011), 127-144. | DOI | MR | JFM

[7] Louhichi, I., Rao, N. V., Yousef, A.: Two questions on products of Toeplitz operators on the Bergman space. Complex Anal. Oper. Theory 3 (2009), 881-889. | DOI | MR | JFM

[8] Louhichi, I., Strouse, E., Zakariasy, L.: Products of Toeplitz operators on the Bergman space. Integral Equations Oper. Theory 54 (2006), 525-539. | DOI | MR | JFM

[9] Louhichi, I., Zakariasy, L.: On Toeplitz operators with quasihomogeneous symbols. Arch. Math. 85 (2005), 248-257. | DOI | MR | JFM

[10] Remmert, R.: Classical Topics in Complex Function Theory. Graduate Texts in Mathematics 172. Springer, New York (1998). | DOI | MR | JFM

Cité par Sources :