Piecewise hereditary algebras under field extensions
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1025-1034.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $A$ be a finite-dimensional $k$-algebra and $K/k$ be a finite separable field extension. We prove that $A$ is derived equivalent to a hereditary algebra if and only if so is $A\otimes _kK$.
DOI : 10.21136/CMJ.2021.0183-20
Classification : 16E35, 16G10
Keywords: piecewise hereditary algebra; Galois extension; directing object
@article{10_21136_CMJ_2021_0183_20,
     author = {Li, Jie},
     title = {Piecewise hereditary algebras under field extensions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1025--1034},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2021},
     doi = {10.21136/CMJ.2021.0183-20},
     mrnumber = {4339108},
     zbl = {07442471},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0183-20/}
}
TY  - JOUR
AU  - Li, Jie
TI  - Piecewise hereditary algebras under field extensions
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 1025
EP  - 1034
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0183-20/
DO  - 10.21136/CMJ.2021.0183-20
LA  - en
ID  - 10_21136_CMJ_2021_0183_20
ER  - 
%0 Journal Article
%A Li, Jie
%T Piecewise hereditary algebras under field extensions
%J Czechoslovak Mathematical Journal
%D 2021
%P 1025-1034
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0183-20/
%R 10.21136/CMJ.2021.0183-20
%G en
%F 10_21136_CMJ_2021_0183_20
Li, Jie. Piecewise hereditary algebras under field extensions. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1025-1034. doi : 10.21136/CMJ.2021.0183-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0183-20/

Cité par Sources :