Piecewise hereditary algebras under field extensions
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1025-1034
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $A$ be a finite-dimensional $k$-algebra and $K/k$ be a finite separable field extension. We prove that $A$ is derived equivalent to a hereditary algebra if and only if so is $A\otimes _kK$.
Let $A$ be a finite-dimensional $k$-algebra and $K/k$ be a finite separable field extension. We prove that $A$ is derived equivalent to a hereditary algebra if and only if so is $A\otimes _kK$.
DOI : 10.21136/CMJ.2021.0183-20
Classification : 16E35, 16G10
Keywords: piecewise hereditary algebra; Galois extension; directing object
@article{10_21136_CMJ_2021_0183_20,
     author = {Li, Jie},
     title = {Piecewise hereditary algebras under field extensions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1025--1034},
     year = {2021},
     volume = {71},
     number = {4},
     doi = {10.21136/CMJ.2021.0183-20},
     mrnumber = {4339108},
     zbl = {07442471},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0183-20/}
}
TY  - JOUR
AU  - Li, Jie
TI  - Piecewise hereditary algebras under field extensions
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 1025
EP  - 1034
VL  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0183-20/
DO  - 10.21136/CMJ.2021.0183-20
LA  - en
ID  - 10_21136_CMJ_2021_0183_20
ER  - 
%0 Journal Article
%A Li, Jie
%T Piecewise hereditary algebras under field extensions
%J Czechoslovak Mathematical Journal
%D 2021
%P 1025-1034
%V 71
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0183-20/
%R 10.21136/CMJ.2021.0183-20
%G en
%F 10_21136_CMJ_2021_0183_20
Li, Jie. Piecewise hereditary algebras under field extensions. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1025-1034. doi: 10.21136/CMJ.2021.0183-20

[1] Assem, I., Simson, D., Skowrońsky, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). | DOI | MR | JFM

[2] Chen, X.-W., Ringel, C. M.: Hereditary triangulated categories. J. Noncommut. Geom. 12 (2018), 1425-1444. | DOI | MR | JFM

[3] Dionne, J., Lanzilotta, M., Smith, D.: Skew group algebras of piecewise hereditary algebras are piecewise hereditary. J. Pure Appl. Algebra 213 (2009), 241-249. | DOI | MR | JFM

[4] Happel, D., Reiten, I.: Hereditary abelian categories with tilting object over arbitrary base fields. J. Algebra 256 (2002), 414-432. | DOI | MR | JFM

[5] Happel, D., Zacharia, D.: A homological characterization of piecewise hereditary algebras. Math. Z. 260 (2008), 177-185. | DOI | MR | JFM

[6] Kasjan, S.: Auslander-Reiten sequences under base field extension. Proc. Am. Math. Soc. 128 (2000), 2885-2896. | DOI | MR | JFM

[7] Li, J.: Algebra extensions and derived-discrete algebras. Available at , 8 pages. | arXiv

[8] Li, L.: Finitistic dimensions and piecewise hereditary property of skew group algebras. Glasg. Math. J. 57 (2015), 509-517. | DOI | MR | JFM

[9] Lin, Y., Zhou, Z.: Tilted algebras and crossed products. Glasg. Math. J. 58 (2016), 559-571. | DOI | MR | JFM

[10] Năstăsescu, C., Bergh, M. Van den, Oystaeyen, F. Van: Separable functors applied to graded rings. J. Algebra 123 (1989), 397-413. | DOI | MR | JFM

[11] Rafael, M. D.: Separable functors revisited. Commun. Algebra 18 (1990), 1445-1459. | DOI | MR | JFM

[12] Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc., II. Ser. 39 (1989), 436-456. | DOI | MR | JFM

[13] Zimmermann, A.: A Noether-Deuring theorem for derived categories. Glasg. Math. J. 54 (2012), 647-654. | DOI | MR | JFM

Cité par Sources :