Keywords: piecewise hereditary algebra; Galois extension; directing object
@article{10_21136_CMJ_2021_0183_20,
author = {Li, Jie},
title = {Piecewise hereditary algebras under field extensions},
journal = {Czechoslovak Mathematical Journal},
pages = {1025--1034},
year = {2021},
volume = {71},
number = {4},
doi = {10.21136/CMJ.2021.0183-20},
mrnumber = {4339108},
zbl = {07442471},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0183-20/}
}
TY - JOUR AU - Li, Jie TI - Piecewise hereditary algebras under field extensions JO - Czechoslovak Mathematical Journal PY - 2021 SP - 1025 EP - 1034 VL - 71 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0183-20/ DO - 10.21136/CMJ.2021.0183-20 LA - en ID - 10_21136_CMJ_2021_0183_20 ER -
Li, Jie. Piecewise hereditary algebras under field extensions. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1025-1034. doi: 10.21136/CMJ.2021.0183-20
[1] Assem, I., Simson, D., Skowrońsky, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). | DOI | MR | JFM
[2] Chen, X.-W., Ringel, C. M.: Hereditary triangulated categories. J. Noncommut. Geom. 12 (2018), 1425-1444. | DOI | MR | JFM
[3] Dionne, J., Lanzilotta, M., Smith, D.: Skew group algebras of piecewise hereditary algebras are piecewise hereditary. J. Pure Appl. Algebra 213 (2009), 241-249. | DOI | MR | JFM
[4] Happel, D., Reiten, I.: Hereditary abelian categories with tilting object over arbitrary base fields. J. Algebra 256 (2002), 414-432. | DOI | MR | JFM
[5] Happel, D., Zacharia, D.: A homological characterization of piecewise hereditary algebras. Math. Z. 260 (2008), 177-185. | DOI | MR | JFM
[6] Kasjan, S.: Auslander-Reiten sequences under base field extension. Proc. Am. Math. Soc. 128 (2000), 2885-2896. | DOI | MR | JFM
[7] Li, J.: Algebra extensions and derived-discrete algebras. Available at , 8 pages. | arXiv
[8] Li, L.: Finitistic dimensions and piecewise hereditary property of skew group algebras. Glasg. Math. J. 57 (2015), 509-517. | DOI | MR | JFM
[9] Lin, Y., Zhou, Z.: Tilted algebras and crossed products. Glasg. Math. J. 58 (2016), 559-571. | DOI | MR | JFM
[10] Năstăsescu, C., Bergh, M. Van den, Oystaeyen, F. Van: Separable functors applied to graded rings. J. Algebra 123 (1989), 397-413. | DOI | MR | JFM
[11] Rafael, M. D.: Separable functors revisited. Commun. Algebra 18 (1990), 1445-1459. | DOI | MR | JFM
[12] Rickard, J.: Morita theory for derived categories. J. Lond. Math. Soc., II. Ser. 39 (1989), 436-456. | DOI | MR | JFM
[13] Zimmermann, A.: A Noether-Deuring theorem for derived categories. Glasg. Math. J. 54 (2012), 647-654. | DOI | MR | JFM
Cité par Sources :