Piecewise hereditary algebras under field extensions
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1025-1034
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $A$ be a finite-dimensional $k$-algebra and $K/k$ be a finite separable field extension. We prove that $A$ is derived equivalent to a hereditary algebra if and only if so is $A\otimes _kK$.
DOI :
10.21136/CMJ.2021.0183-20
Classification :
16E35, 16G10
Keywords: piecewise hereditary algebra; Galois extension; directing object
Keywords: piecewise hereditary algebra; Galois extension; directing object
@article{10_21136_CMJ_2021_0183_20,
author = {Li, Jie},
title = {Piecewise hereditary algebras under field extensions},
journal = {Czechoslovak Mathematical Journal},
pages = {1025--1034},
publisher = {mathdoc},
volume = {71},
number = {4},
year = {2021},
doi = {10.21136/CMJ.2021.0183-20},
mrnumber = {4339108},
zbl = {07442471},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0183-20/}
}
TY - JOUR AU - Li, Jie TI - Piecewise hereditary algebras under field extensions JO - Czechoslovak Mathematical Journal PY - 2021 SP - 1025 EP - 1034 VL - 71 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0183-20/ DO - 10.21136/CMJ.2021.0183-20 LA - en ID - 10_21136_CMJ_2021_0183_20 ER -
Li, Jie. Piecewise hereditary algebras under field extensions. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1025-1034. doi: 10.21136/CMJ.2021.0183-20
Cité par Sources :