Keywords: tridiagonal matrix; antitridiagonal matrix; elliptical disk; numerical range
@article{10_21136_CMJ_2021_0174_20,
author = {Bebiano, Nat\'alia and Furtado, Susana},
title = {A note on classes of structured matrices with elliptical type numerical range},
journal = {Czechoslovak Mathematical Journal},
pages = {1015--1023},
year = {2021},
volume = {71},
number = {4},
doi = {10.21136/CMJ.2021.0174-20},
mrnumber = {4339107},
zbl = {07442470},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0174-20/}
}
TY - JOUR AU - Bebiano, Natália AU - Furtado, Susana TI - A note on classes of structured matrices with elliptical type numerical range JO - Czechoslovak Mathematical Journal PY - 2021 SP - 1015 EP - 1023 VL - 71 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0174-20/ DO - 10.21136/CMJ.2021.0174-20 LA - en ID - 10_21136_CMJ_2021_0174_20 ER -
%0 Journal Article %A Bebiano, Natália %A Furtado, Susana %T A note on classes of structured matrices with elliptical type numerical range %J Czechoslovak Mathematical Journal %D 2021 %P 1015-1023 %V 71 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0174-20/ %R 10.21136/CMJ.2021.0174-20 %G en %F 10_21136_CMJ_2021_0174_20
Bebiano, Natália; Furtado, Susana. A note on classes of structured matrices with elliptical type numerical range. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1015-1023. doi: 10.21136/CMJ.2021.0174-20
[1] Bebiano, N., Providência, J. da, Nata, A.: The numerical range of banded biperiodic Toeplitz operators. J. Math. Anal. Appl. 398 (2013), 189-197. | DOI | MR | JFM
[2] Bebiano, N., Furtado, S.: Remarks on anti-tridiagonal matrices. Appl. Math. Comput. 373 (2020), Article ID 125008, 10 pages. | DOI | MR | JFM
[3] Bebiano, N., Spitkovsky, I. M.: Numerical ranges of Toeplitz operators with matrix symbols. Linear Algebra Appl. 436 (2012), 1721-1726. | DOI | MR | JFM
[4] Brown, E. S., Spitkovsky, I. M.: On matrices with elliptical numerical ranges. Linear Multilinear Algebra 52 (2004), 177-193. | DOI | MR | JFM
[5] Chien, M.-T.: On the numerical range of tridiagonal operators. Linear Algebra Appl. 246 (1996), 203-214. | DOI | MR | JFM
[6] Chien, M.-T., Nakazato, H.: The numerical range of a tridiagonal operator. J. Math. Anal. Appl. 373 (2011), 297-304. | DOI | MR | JFM
[7] Chien, R. T., Spitkovsky, I. M.: On the numerical ranges of some tridiagonal matrices. Linear Algebra Appl. 470 (2015), 228-240. | DOI | MR | JFM
[8] Chien, M.-T., Yeh, L., Yeh, Y.-T., Lin, F.-Z.: On geometric properties of the numerical range. Linear Algebra Appl. 274 (1998), 389-410. | DOI | MR | JFM
[9] Eiermann, M.: Field of values and iterative methods. Linear Algebra Appl. 180 (1993), 167-197. | DOI | MR | JFM
[10] Geryba, T., Spitkovsky, I. M.: On the numerical range of some block matrices with scalar diagonal blocks. (to appear) in Linear and Multilinear Algebra. | DOI
[11] Gustafson, K. E., Rao, D. K. M.: Numerical Range: The Field of Values of Linear Operators and Matrices. Universitext. Springer, New York (1997). | DOI | MR | JFM
[12] Horn, R. A., Johnson, C. R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991). | DOI | MR | JFM
[13] Kippenhahn, R.: Über den Wertevorrat einer Matrix. Math. Nachr. 6 (1951), 193-228 German. | DOI | MR | JFM
[14] Klein, E. M.: The numerical range of a Toeplitz operator. Proc. Am. Math. Soc. 35 (1972), 101-103. | DOI | MR | JFM
[15] Marcus, M., Pesce, C.: Computer generated numerical ranges and some resulting theorems. Linear and Multilinear Algebra 20 (1987), 121-157. | DOI | MR | JFM
[16] Rault, P. X., Sendova, T., Spitkovsky, I. M.: 3-by-3 matrices with elliptical numerical range revisited. Electron. J. Linear Algebra 26 (2013), 158-167. | DOI | MR | JFM
Cité par Sources :