Pairs of square-free values of the type $n^2+1$, $n^2+2$
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 991-1009.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that there exist infinitely many consecutive square-free numbers of the form $n^2+1$, $n^2+2$. We also establish an asymptotic formula for the number of such square-free pairs when $n$ does not exceed given sufficiently large positive number.
DOI : 10.21136/CMJ.2021.0165-20
Classification : 11L05, 11N25, 11N37
Keywords: square-free number; asymptotic formula; Kloosterman sum
@article{10_21136_CMJ_2021_0165_20,
     author = {Dimitrov, Stoyan},
     title = {Pairs of square-free values of the type $n^2+1$, $n^2+2$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {991--1009},
     publisher = {mathdoc},
     volume = {71},
     number = {4},
     year = {2021},
     doi = {10.21136/CMJ.2021.0165-20},
     mrnumber = {4339105},
     zbl = {07442468},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0165-20/}
}
TY  - JOUR
AU  - Dimitrov, Stoyan
TI  - Pairs of square-free values of the type $n^2+1$, $n^2+2$
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 991
EP  - 1009
VL  - 71
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0165-20/
DO  - 10.21136/CMJ.2021.0165-20
LA  - en
ID  - 10_21136_CMJ_2021_0165_20
ER  - 
%0 Journal Article
%A Dimitrov, Stoyan
%T Pairs of square-free values of the type $n^2+1$, $n^2+2$
%J Czechoslovak Mathematical Journal
%D 2021
%P 991-1009
%V 71
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0165-20/
%R 10.21136/CMJ.2021.0165-20
%G en
%F 10_21136_CMJ_2021_0165_20
Dimitrov, Stoyan. Pairs of square-free values of the type $n^2+1$, $n^2+2$. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 991-1009. doi : 10.21136/CMJ.2021.0165-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0165-20/

Cité par Sources :