Keywords: square-free number; asymptotic formula; Kloosterman sum
@article{10_21136_CMJ_2021_0165_20,
author = {Dimitrov, Stoyan},
title = {Pairs of square-free values of the type $n^2+1$, $n^2+2$},
journal = {Czechoslovak Mathematical Journal},
pages = {991--1009},
year = {2021},
volume = {71},
number = {4},
doi = {10.21136/CMJ.2021.0165-20},
mrnumber = {4339105},
zbl = {07442468},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0165-20/}
}
TY - JOUR AU - Dimitrov, Stoyan TI - Pairs of square-free values of the type $n^2+1$, $n^2+2$ JO - Czechoslovak Mathematical Journal PY - 2021 SP - 991 EP - 1009 VL - 71 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0165-20/ DO - 10.21136/CMJ.2021.0165-20 LA - en ID - 10_21136_CMJ_2021_0165_20 ER -
Dimitrov, Stoyan. Pairs of square-free values of the type $n^2+1$, $n^2+2$. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 991-1009. doi: 10.21136/CMJ.2021.0165-20
[1] Carlitz, L.: On a problem in additive arithmetic. II. Q. J. Math., Oxf. Ser. 3 (1932), 273-290. | DOI | JFM
[2] Dimitrov, S. I.: Consecutive square-free numbers of the form $[n^c],[n^c]+1$. JP J. Algebra Number Theory Appl. 40 (2018), 945-956. | DOI | JFM
[3] Dimitrov, S. I.: On the distribution of consecutive square-free numbers of the form $[\alpha n],[\alpha n]+1$. Proc. Jangjeon Math. Soc. 22 (2019), 463-470. | DOI | MR | JFM
[4] Dimitrov, S. I.: Consecutive square-free values of the form $[\alpha p],[\alpha p]+1$. Proc. Jangjeon Math. Soc. 23 (2020), 519-524. | MR
[5] Dimitrov, S. I.: On the number of pairs of positive integers $x, y \leq H$ such that $x^2+y^2+1,x^2+y^2+2$ are square-free. Acta Arith. 194 (2020), 281-294. | DOI | MR | JFM
[6] Estermann, T.: Einige Sätze über quadratfreie Zahlen. Math. Ann. 105 (1931), 653-662 German. | DOI | MR | JFM
[7] Heath-Brown, D. R.: The square sieve and consecutive square-free numbers. Math. Ann. 266 (1984), 251-259. | DOI | MR | JFM
[8] Heath-Brown, D. R.: Square-free values of $n^2+1$. Acta Arith. 155 (2012), 1-13. | DOI | MR | JFM
[9] Iwaniec, H., Kowalski, E.: Analytic Number Theory. Colloquium Publications 53. American Mathematical Society (2004). | DOI | MR | JFM
[10] Reuss, T.: Pairs of $k$-free numbers, consecutive square-full numbers. Available at , 28 pages. | arXiv
[11] Tolev, D. I.: On the exponential sum with square-free numbers. Bull. Lond. Math. Soc. 37 (2005), 827-834. | DOI | MR | JFM
[12] Tolev, D. I.: Lectures on Elementary and Analytic Number Theory. II. St. Kliment Ohridski University Press, Sofia (2016), Bulgarian.
Cité par Sources :