Pairs of square-free values of the type $n^2+1$, $n^2+2$
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 991-1009
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that there exist infinitely many consecutive square-free numbers of the form $n^2+1$, $n^2+2$. We also establish an asymptotic formula for the number of such square-free pairs when $n$ does not exceed given sufficiently large positive number.
DOI :
10.21136/CMJ.2021.0165-20
Classification :
11L05, 11N25, 11N37
Keywords: square-free number; asymptotic formula; Kloosterman sum
Keywords: square-free number; asymptotic formula; Kloosterman sum
@article{10_21136_CMJ_2021_0165_20,
author = {Dimitrov, Stoyan},
title = {Pairs of square-free values of the type $n^2+1$, $n^2+2$},
journal = {Czechoslovak Mathematical Journal},
pages = {991--1009},
publisher = {mathdoc},
volume = {71},
number = {4},
year = {2021},
doi = {10.21136/CMJ.2021.0165-20},
mrnumber = {4339105},
zbl = {07442468},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0165-20/}
}
TY - JOUR AU - Dimitrov, Stoyan TI - Pairs of square-free values of the type $n^2+1$, $n^2+2$ JO - Czechoslovak Mathematical Journal PY - 2021 SP - 991 EP - 1009 VL - 71 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0165-20/ DO - 10.21136/CMJ.2021.0165-20 LA - en ID - 10_21136_CMJ_2021_0165_20 ER -
%0 Journal Article %A Dimitrov, Stoyan %T Pairs of square-free values of the type $n^2+1$, $n^2+2$ %J Czechoslovak Mathematical Journal %D 2021 %P 991-1009 %V 71 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0165-20/ %R 10.21136/CMJ.2021.0165-20 %G en %F 10_21136_CMJ_2021_0165_20
Dimitrov, Stoyan. Pairs of square-free values of the type $n^2+1$, $n^2+2$. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 991-1009. doi: 10.21136/CMJ.2021.0165-20
Cité par Sources :