Pairs of square-free values of the type $n^2+1$, $n^2+2$
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 991-1009
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that there exist infinitely many consecutive square-free numbers of the form $n^2+1$, $n^2+2$. We also establish an asymptotic formula for the number of such square-free pairs when $n$ does not exceed given sufficiently large positive number.
We show that there exist infinitely many consecutive square-free numbers of the form $n^2+1$, $n^2+2$. We also establish an asymptotic formula for the number of such square-free pairs when $n$ does not exceed given sufficiently large positive number.
DOI : 10.21136/CMJ.2021.0165-20
Classification : 11L05, 11N25, 11N37
Keywords: square-free number; asymptotic formula; Kloosterman sum
@article{10_21136_CMJ_2021_0165_20,
     author = {Dimitrov, Stoyan},
     title = {Pairs of square-free values of the type $n^2+1$, $n^2+2$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {991--1009},
     year = {2021},
     volume = {71},
     number = {4},
     doi = {10.21136/CMJ.2021.0165-20},
     mrnumber = {4339105},
     zbl = {07442468},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0165-20/}
}
TY  - JOUR
AU  - Dimitrov, Stoyan
TI  - Pairs of square-free values of the type $n^2+1$, $n^2+2$
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 991
EP  - 1009
VL  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0165-20/
DO  - 10.21136/CMJ.2021.0165-20
LA  - en
ID  - 10_21136_CMJ_2021_0165_20
ER  - 
%0 Journal Article
%A Dimitrov, Stoyan
%T Pairs of square-free values of the type $n^2+1$, $n^2+2$
%J Czechoslovak Mathematical Journal
%D 2021
%P 991-1009
%V 71
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0165-20/
%R 10.21136/CMJ.2021.0165-20
%G en
%F 10_21136_CMJ_2021_0165_20
Dimitrov, Stoyan. Pairs of square-free values of the type $n^2+1$, $n^2+2$. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 991-1009. doi: 10.21136/CMJ.2021.0165-20

[1] Carlitz, L.: On a problem in additive arithmetic. II. Q. J. Math., Oxf. Ser. 3 (1932), 273-290. | DOI | JFM

[2] Dimitrov, S. I.: Consecutive square-free numbers of the form $[n^c],[n^c]+1$. JP J. Algebra Number Theory Appl. 40 (2018), 945-956. | DOI | JFM

[3] Dimitrov, S. I.: On the distribution of consecutive square-free numbers of the form $[\alpha n],[\alpha n]+1$. Proc. Jangjeon Math. Soc. 22 (2019), 463-470. | DOI | MR | JFM

[4] Dimitrov, S. I.: Consecutive square-free values of the form $[\alpha p],[\alpha p]+1$. Proc. Jangjeon Math. Soc. 23 (2020), 519-524. | MR

[5] Dimitrov, S. I.: On the number of pairs of positive integers $x, y \leq H$ such that $x^2+y^2+1,x^2+y^2+2$ are square-free. Acta Arith. 194 (2020), 281-294. | DOI | MR | JFM

[6] Estermann, T.: Einige Sätze über quadratfreie Zahlen. Math. Ann. 105 (1931), 653-662 German. | DOI | MR | JFM

[7] Heath-Brown, D. R.: The square sieve and consecutive square-free numbers. Math. Ann. 266 (1984), 251-259. | DOI | MR | JFM

[8] Heath-Brown, D. R.: Square-free values of $n^2+1$. Acta Arith. 155 (2012), 1-13. | DOI | MR | JFM

[9] Iwaniec, H., Kowalski, E.: Analytic Number Theory. Colloquium Publications 53. American Mathematical Society (2004). | DOI | MR | JFM

[10] Reuss, T.: Pairs of $k$-free numbers, consecutive square-full numbers. Available at , 28 pages. | arXiv

[11] Tolev, D. I.: On the exponential sum with square-free numbers. Bull. Lond. Math. Soc. 37 (2005), 827-834. | DOI | MR | JFM

[12] Tolev, D. I.: Lectures on Elementary and Analytic Number Theory. II. St. Kliment Ohridski University Press, Sofia (2016), Bulgarian.

Cité par Sources :