Application of very weak formulation on homogenization of boundary value problems in porous media
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 975-989
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The goal of this paper is to present a different approach to the homogenization of the Dirichlet boundary value problem in porous medium. Unlike the standard energy method or the method of two-scale convergence, this approach is not based on the weak formulation of the problem but on the very weak formulation. To illustrate the method and its advantages we treat the stationary, incompressible Navier-Stokes system with the non-homogeneous Dirichlet boundary condition in periodic porous medium. The nonzero velocity trace on the boundary of a solid inclusion yields a non-standard addition to the source term in the Darcy law. In addition, the homogenized model is not incompressible.
The goal of this paper is to present a different approach to the homogenization of the Dirichlet boundary value problem in porous medium. Unlike the standard energy method or the method of two-scale convergence, this approach is not based on the weak formulation of the problem but on the very weak formulation. To illustrate the method and its advantages we treat the stationary, incompressible Navier-Stokes system with the non-homogeneous Dirichlet boundary condition in periodic porous medium. The nonzero velocity trace on the boundary of a solid inclusion yields a non-standard addition to the source term in the Darcy law. In addition, the homogenized model is not incompressible.
DOI : 10.21136/CMJ.2021.0161-20
Classification : 35B27, 35Q30, 76M50
Keywords: homogenization; porous medium; Navier-Stokes system; very weak formulation
@article{10_21136_CMJ_2021_0161_20,
     author = {Maru\v{s}i\'c-Paloka, Eduard},
     title = {Application of very weak formulation on homogenization of boundary value problems in porous media},
     journal = {Czechoslovak Mathematical Journal},
     pages = {975--989},
     year = {2021},
     volume = {71},
     number = {4},
     doi = {10.21136/CMJ.2021.0161-20},
     mrnumber = {4339104},
     zbl = {07442467},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0161-20/}
}
TY  - JOUR
AU  - Marušić-Paloka, Eduard
TI  - Application of very weak formulation on homogenization of boundary value problems in porous media
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 975
EP  - 989
VL  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0161-20/
DO  - 10.21136/CMJ.2021.0161-20
LA  - en
ID  - 10_21136_CMJ_2021_0161_20
ER  - 
%0 Journal Article
%A Marušić-Paloka, Eduard
%T Application of very weak formulation on homogenization of boundary value problems in porous media
%J Czechoslovak Mathematical Journal
%D 2021
%P 975-989
%V 71
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0161-20/
%R 10.21136/CMJ.2021.0161-20
%G en
%F 10_21136_CMJ_2021_0161_20
Marušić-Paloka, Eduard. Application of very weak formulation on homogenization of boundary value problems in porous media. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 975-989. doi: 10.21136/CMJ.2021.0161-20

[1] Allaire, G.: Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113 (1991), 209-259. | DOI | MR | JFM

[2] Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992), 1482-1518. | DOI | MR | JFM

[3] Bakhvalov, N. S., Panasenko, G.: Homogenisation: Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials. Mathematics and Its Applications: Soviet Series 36. Kluwer Academic, Dordrecht (1989). | DOI | MR | JFM

[4] Capatina, A., Ene, H.: Homogenisation of the Stokes problem with a pure non-homogeneous slip boundary condition by the periodic unfolding method. Eur. J. Appl. Math. 22 (2011), 333-345. | DOI | MR | JFM

[5] Cioranescu, D., Donato, P., Ene, H.: Homogenization of the Stokes problem with nonhomogeneous slip boundary conditions. Math. Methods Appl. Sci. 19 (1996), 857-881. | DOI | MR | JFM

[6] Cioranescu, D., Donato, P., Zaki, R.: The periodic unfolding method in perforated domains. Port. Math. (N.S.) 63 (2006), 467-496. | MR | JFM

[7] Conca, C.: Étude d'un fluide traversant une paroi perforée. I. Comportement limite près de la paroi. J. Math. Pures Appl., IX. Sér. French 66 (1987), 1-43. | MR | JFM

[8] Conca, C.: Étude d'un fluide traversant une paroi perforée. II. Comportement limite loin de la paroi. J. Math. Pures Appl., IX. Sér. French 66 (1987), 45-69. | MR | JFM

[9] Craig, A. E., Dabiri, J. O., Koseff, J. R.: A kinematic description of the key flow characteristics in an array of finite-height rotating cylinders. J. Fluids Eng. 138 (2016), Article ID 070906, 16 pages. | DOI

[10] Diening, L., Feireisl, E., Lu, Y.: The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier-Stokes system. ESAIM, Control Optim. Calc. Var. 23 (2017), 851-868. | DOI | MR | JFM

[11] Lipton, R., Avellaneda, M.: Darcy's law for slow viscous flow past a stationary array of bubbles. Proc. R. Soc. Edinb., Sect. A 114 (1990), 71-79. | DOI | MR | JFM

[12] Marušić-Paloka, E.: Solvability of the Navier-Stokes system with $L^2$ boundary data. Appl. Math. Optimization 41 (2000), 365-375. | DOI | MR | JFM

[13] Marušić-Paloka, E., Mikelić, A.: The derivation of a nonlinear filtration law including the inertia effects via homogenization. Nonlinear Anal., Theory Methods Appl., Ser. A 42 (2000), 97-137. | DOI | MR | JFM

[14] Mikelić, A., Aganović, I.: Homogenization in a porous media under a nonhomgeneous boundary condition. Boll. Unione Mat. Ital., VII. Ser., A 1 (1987), 171-180. | MR | JFM

[15] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608-623. | DOI | MR | JFM

[16] Sanchez-Palencia, E.: Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics 127. Springer, Berlin (1980). | DOI | MR | JFM

Cité par Sources :