Keywords: homogenization; porous medium; Navier-Stokes system; very weak formulation
@article{10_21136_CMJ_2021_0161_20,
author = {Maru\v{s}i\'c-Paloka, Eduard},
title = {Application of very weak formulation on homogenization of boundary value problems in porous media},
journal = {Czechoslovak Mathematical Journal},
pages = {975--989},
year = {2021},
volume = {71},
number = {4},
doi = {10.21136/CMJ.2021.0161-20},
mrnumber = {4339104},
zbl = {07442467},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0161-20/}
}
TY - JOUR AU - Marušić-Paloka, Eduard TI - Application of very weak formulation on homogenization of boundary value problems in porous media JO - Czechoslovak Mathematical Journal PY - 2021 SP - 975 EP - 989 VL - 71 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0161-20/ DO - 10.21136/CMJ.2021.0161-20 LA - en ID - 10_21136_CMJ_2021_0161_20 ER -
%0 Journal Article %A Marušić-Paloka, Eduard %T Application of very weak formulation on homogenization of boundary value problems in porous media %J Czechoslovak Mathematical Journal %D 2021 %P 975-989 %V 71 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0161-20/ %R 10.21136/CMJ.2021.0161-20 %G en %F 10_21136_CMJ_2021_0161_20
Marušić-Paloka, Eduard. Application of very weak formulation on homogenization of boundary value problems in porous media. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 975-989. doi: 10.21136/CMJ.2021.0161-20
[1] Allaire, G.: Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I. Abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113 (1991), 209-259. | DOI | MR | JFM
[2] Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992), 1482-1518. | DOI | MR | JFM
[3] Bakhvalov, N. S., Panasenko, G.: Homogenisation: Averaging Processes in Periodic Media. Mathematical Problems in the Mechanics of Composite Materials. Mathematics and Its Applications: Soviet Series 36. Kluwer Academic, Dordrecht (1989). | DOI | MR | JFM
[4] Capatina, A., Ene, H.: Homogenisation of the Stokes problem with a pure non-homogeneous slip boundary condition by the periodic unfolding method. Eur. J. Appl. Math. 22 (2011), 333-345. | DOI | MR | JFM
[5] Cioranescu, D., Donato, P., Ene, H.: Homogenization of the Stokes problem with nonhomogeneous slip boundary conditions. Math. Methods Appl. Sci. 19 (1996), 857-881. | DOI | MR | JFM
[6] Cioranescu, D., Donato, P., Zaki, R.: The periodic unfolding method in perforated domains. Port. Math. (N.S.) 63 (2006), 467-496. | MR | JFM
[7] Conca, C.: Étude d'un fluide traversant une paroi perforée. I. Comportement limite près de la paroi. J. Math. Pures Appl., IX. Sér. French 66 (1987), 1-43. | MR | JFM
[8] Conca, C.: Étude d'un fluide traversant une paroi perforée. II. Comportement limite loin de la paroi. J. Math. Pures Appl., IX. Sér. French 66 (1987), 45-69. | MR | JFM
[9] Craig, A. E., Dabiri, J. O., Koseff, J. R.: A kinematic description of the key flow characteristics in an array of finite-height rotating cylinders. J. Fluids Eng. 138 (2016), Article ID 070906, 16 pages. | DOI
[10] Diening, L., Feireisl, E., Lu, Y.: The inverse of the divergence operator on perforated domains with applications to homogenization problems for the compressible Navier-Stokes system. ESAIM, Control Optim. Calc. Var. 23 (2017), 851-868. | DOI | MR | JFM
[11] Lipton, R., Avellaneda, M.: Darcy's law for slow viscous flow past a stationary array of bubbles. Proc. R. Soc. Edinb., Sect. A 114 (1990), 71-79. | DOI | MR | JFM
[12] Marušić-Paloka, E.: Solvability of the Navier-Stokes system with $L^2$ boundary data. Appl. Math. Optimization 41 (2000), 365-375. | DOI | MR | JFM
[13] Marušić-Paloka, E., Mikelić, A.: The derivation of a nonlinear filtration law including the inertia effects via homogenization. Nonlinear Anal., Theory Methods Appl., Ser. A 42 (2000), 97-137. | DOI | MR | JFM
[14] Mikelić, A., Aganović, I.: Homogenization in a porous media under a nonhomgeneous boundary condition. Boll. Unione Mat. Ital., VII. Ser., A 1 (1987), 171-180. | MR | JFM
[15] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608-623. | DOI | MR | JFM
[16] Sanchez-Palencia, E.: Non-Homogeneous Media and Vibration Theory. Lecture Notes in Physics 127. Springer, Berlin (1980). | DOI | MR | JFM
Cité par Sources :