Weakly compact sets in Orlicz sequence spaces
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 961-974
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We combine the techniques of sequence spaces and general Orlicz functions that are broader than the classical cases of $N$-functions. We give three criteria for the weakly compact sets in general Orlicz sequence spaces. One criterion is related to elements of dual spaces. Under the restriction of $\lim _{u\rightarrow 0} M(u)/u=0$, we propose two other modular types that are convenient to use because they get rid of elements of dual spaces. Subsequently, by one of these two modular criteria, we see that a set $A$ in Riesz spaces $l_p$ $(1 p \infty )$ is relatively sequential weakly compact if and only if it is normed bounded, that says $\sup _{u\in A}\sum _{i=1}^{\infty } |u(i)|^p \nobreak \infty $. The result again confirms the conclusion of the Banach-Alaoglu \hbox {theorem}.
We combine the techniques of sequence spaces and general Orlicz functions that are broader than the classical cases of $N$-functions. We give three criteria for the weakly compact sets in general Orlicz sequence spaces. One criterion is related to elements of dual spaces. Under the restriction of $\lim _{u\rightarrow 0} M(u)/u=0$, we propose two other modular types that are convenient to use because they get rid of elements of dual spaces. Subsequently, by one of these two modular criteria, we see that a set $A$ in Riesz spaces $l_p$ $(1 p \infty )$ is relatively sequential weakly compact if and only if it is normed bounded, that says $\sup _{u\in A}\sum _{i=1}^{\infty } |u(i)|^p \nobreak \infty $. The result again confirms the conclusion of the Banach-Alaoglu \hbox {theorem}.
DOI : 10.21136/CMJ.2021.0153-20
Classification : 46B20, 46E30
Keywords: compact set; weak topology; Banach space; dual space; Orlicz sequence spaces
@article{10_21136_CMJ_2021_0153_20,
     author = {Shi, Siyu and Shi, Zhongrui and Wu, Shujun},
     title = {Weakly compact sets in {Orlicz} sequence spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {961--974},
     year = {2021},
     volume = {71},
     number = {4},
     doi = {10.21136/CMJ.2021.0153-20},
     mrnumber = {4339103},
     zbl = {07442466},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0153-20/}
}
TY  - JOUR
AU  - Shi, Siyu
AU  - Shi, Zhongrui
AU  - Wu, Shujun
TI  - Weakly compact sets in Orlicz sequence spaces
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 961
EP  - 974
VL  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0153-20/
DO  - 10.21136/CMJ.2021.0153-20
LA  - en
ID  - 10_21136_CMJ_2021_0153_20
ER  - 
%0 Journal Article
%A Shi, Siyu
%A Shi, Zhongrui
%A Wu, Shujun
%T Weakly compact sets in Orlicz sequence spaces
%J Czechoslovak Mathematical Journal
%D 2021
%P 961-974
%V 71
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0153-20/
%R 10.21136/CMJ.2021.0153-20
%G en
%F 10_21136_CMJ_2021_0153_20
Shi, Siyu; Shi, Zhongrui; Wu, Shujun. Weakly compact sets in Orlicz sequence spaces. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 961-974. doi: 10.21136/CMJ.2021.0153-20

[1] Aleksandrov, P. S., Kolmogorov, A. N.: Introduction to the Theory of Sets and the Theory of Functions. 1. Introduction to the General Theory of Sets and Functions. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow (1948), Russian. | MR | JFM

[2] Andô, T.: Weakly compact sets in Orlicz spaces. Can. J. Math. 14 (1962), 170-176. | DOI | MR | JFM

[3] Arzelà, C.: Funzioni di linee. Rom. Acc. L. Rend. (4) 5 (1889), 342-348 Italian \99999JFM99999 21.0424.01.

[4] Batt, J., Schlüchtermann, G.: Eberlein compacts in $L_1(X)$. Stud. Math. 83 (1986), 239-250. | DOI | MR | JFM

[5] Brouwer, L. E. J.: Beweis der Invarianz des $n$-dimensionalen Gebiets. Math. Ann. 71 (1911), 305-313 German \99999JFM99999 42.0418.01. | DOI | MR

[6] Cheng, L., Cheng, Q., Shen, Q., Tu, K., Zhang, W.: A new approach to measures of noncompactness of Banach spaces. Stud. Math. 240 (2018), 21-45. | DOI | MR | JFM

[7] Cheng, L., Cheng, Q., Zhang, J.: On super fixed point property and super weak compactness of convex subsets in Banach spaces. J. Math. Anal. Appl. 428 (2015), 1209-1224. | DOI | MR | JFM

[8] Darbo, G.: Punti uniti in trasformazioni a codominio non compatto. Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92 Italian. | MR | JFM

[9] Dodds, P. G., Sukochev, F. A., Schlüchtermann, G.: Weak compactness criteria in symmetric spaces of measurable operators. Math. Proc. Camb. Philos. Soc. 131 (2001), 363-384. | DOI | MR | JFM

[10] Fabian, M., Montesinos, V., Zizler, V.: On weak compactness in $L_1$ spaces. Rocky Mt. J. Math. 39 (2009), 1885-1893. | DOI | MR | JFM

[11] Foralewski, P., Hudzik, H., Kolwicz, P.: Non-squareness properties of Orlicz-Lorentz sequence spaces. J. Funct. Anal. 264 (2013), 605-629. | DOI | MR | JFM

[12] Gale, D.: The game of Hex and the Brouwer fixed-point theorem. Am. Math. Mon. 86 (1979), 818-827. | DOI | MR | JFM

[13] James, R. C.: Weakly compact sets. Trans. Am. Math. Soc. 113 (1964), 129-140. | DOI | MR | JFM

[14] James, R. C.: The Eberlein-Šmulian theorem. Functional Analysis. Selected Topics Narosa Publishing House, New Delhi (1998), 47-49. | MR | JFM

[15] Kelley, J. L.: General Topology. The University Series in Higher Mathematics. D. van Nostrand, New York (1955). | MR | JFM

[16] Kolmogorov, A. N., Tikhomirov, V. M.: $\epsilon$-entropy and $\epsilon$-capacity of sets in function spaces. Usp. Mat. Nauk 14 (1959), 3-86 Russian. | MR | JFM

[17] Krasnosel'skij, M. A., Rutitskij, Y. B.: Convex Functions and Orlicz Spaces. P. Noordhoff, Groningen (1961). | MR | JFM

[18] Leray, J., Schauder, J.: Topologie et équations fonctionnelles. Ann. Sci. Éc. Norm. Supér., III. Ser. 51 (1934), 45-78 French. | DOI | MR | JFM

[19] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034. Springer, Berlin (1983). | DOI | MR | JFM

[20] Schlüchtermann, G.: Weak compactness in $L_\infty(\mu,X)$. J. Funct. Anal. 125 (1994), 379-388. | DOI | MR | JFM

[21] Shi, S., Shi, Z.: On generalized Young's inequality. Function Spaces XII Banach Center Publications 119. Polish Academy of Sciences, Institute of Mathematics. Warsaw (2019), 295-309. | DOI | JFM

[22] Shi, Z., Wang, Y.: Uniformly non-square points and representation of functionals of Orlicz-Bochner sequence spaces. Rocky Mt. J. Math. 48 (2018), 639-660. | DOI | MR | JFM

[23] Šmulian, V.: On compact sets in the space of measurable functions. Mat. Sb., N. Ser. 15 (1944), 343-346 Russian. | MR | JFM

[24] Wu, Y.: Normed compact sets and weakly $H$-compact in Orlicz space. J. Nature 3 (1982), 234 Chinese.

[25] Wu, C., Wang, T.: Orlicz Spaces and Applications. Heilongjiang Sci. & Tech. Press, Harbin (1983), Chinese.

[26] Zhang, X., Shi, Z.: A criterion of compact set in Orlicz sequence space $l_{(M)}$. J. Changchun Post Telcommunication Institute 15 (1997), 64-67 Chinese.

Cité par Sources :