Keywords: compact set; weak topology; Banach space; dual space; Orlicz sequence spaces
@article{10_21136_CMJ_2021_0153_20,
author = {Shi, Siyu and Shi, Zhongrui and Wu, Shujun},
title = {Weakly compact sets in {Orlicz} sequence spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {961--974},
year = {2021},
volume = {71},
number = {4},
doi = {10.21136/CMJ.2021.0153-20},
mrnumber = {4339103},
zbl = {07442466},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0153-20/}
}
TY - JOUR AU - Shi, Siyu AU - Shi, Zhongrui AU - Wu, Shujun TI - Weakly compact sets in Orlicz sequence spaces JO - Czechoslovak Mathematical Journal PY - 2021 SP - 961 EP - 974 VL - 71 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0153-20/ DO - 10.21136/CMJ.2021.0153-20 LA - en ID - 10_21136_CMJ_2021_0153_20 ER -
%0 Journal Article %A Shi, Siyu %A Shi, Zhongrui %A Wu, Shujun %T Weakly compact sets in Orlicz sequence spaces %J Czechoslovak Mathematical Journal %D 2021 %P 961-974 %V 71 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0153-20/ %R 10.21136/CMJ.2021.0153-20 %G en %F 10_21136_CMJ_2021_0153_20
Shi, Siyu; Shi, Zhongrui; Wu, Shujun. Weakly compact sets in Orlicz sequence spaces. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 961-974. doi: 10.21136/CMJ.2021.0153-20
[1] Aleksandrov, P. S., Kolmogorov, A. N.: Introduction to the Theory of Sets and the Theory of Functions. 1. Introduction to the General Theory of Sets and Functions. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow (1948), Russian. | MR | JFM
[2] Andô, T.: Weakly compact sets in Orlicz spaces. Can. J. Math. 14 (1962), 170-176. | DOI | MR | JFM
[3] Arzelà, C.: Funzioni di linee. Rom. Acc. L. Rend. (4) 5 (1889), 342-348 Italian \99999JFM99999 21.0424.01.
[4] Batt, J., Schlüchtermann, G.: Eberlein compacts in $L_1(X)$. Stud. Math. 83 (1986), 239-250. | DOI | MR | JFM
[5] Brouwer, L. E. J.: Beweis der Invarianz des $n$-dimensionalen Gebiets. Math. Ann. 71 (1911), 305-313 German \99999JFM99999 42.0418.01. | DOI | MR
[6] Cheng, L., Cheng, Q., Shen, Q., Tu, K., Zhang, W.: A new approach to measures of noncompactness of Banach spaces. Stud. Math. 240 (2018), 21-45. | DOI | MR | JFM
[7] Cheng, L., Cheng, Q., Zhang, J.: On super fixed point property and super weak compactness of convex subsets in Banach spaces. J. Math. Anal. Appl. 428 (2015), 1209-1224. | DOI | MR | JFM
[8] Darbo, G.: Punti uniti in trasformazioni a codominio non compatto. Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92 Italian. | MR | JFM
[9] Dodds, P. G., Sukochev, F. A., Schlüchtermann, G.: Weak compactness criteria in symmetric spaces of measurable operators. Math. Proc. Camb. Philos. Soc. 131 (2001), 363-384. | DOI | MR | JFM
[10] Fabian, M., Montesinos, V., Zizler, V.: On weak compactness in $L_1$ spaces. Rocky Mt. J. Math. 39 (2009), 1885-1893. | DOI | MR | JFM
[11] Foralewski, P., Hudzik, H., Kolwicz, P.: Non-squareness properties of Orlicz-Lorentz sequence spaces. J. Funct. Anal. 264 (2013), 605-629. | DOI | MR | JFM
[12] Gale, D.: The game of Hex and the Brouwer fixed-point theorem. Am. Math. Mon. 86 (1979), 818-827. | DOI | MR | JFM
[13] James, R. C.: Weakly compact sets. Trans. Am. Math. Soc. 113 (1964), 129-140. | DOI | MR | JFM
[14] James, R. C.: The Eberlein-Šmulian theorem. Functional Analysis. Selected Topics Narosa Publishing House, New Delhi (1998), 47-49. | MR | JFM
[15] Kelley, J. L.: General Topology. The University Series in Higher Mathematics. D. van Nostrand, New York (1955). | MR | JFM
[16] Kolmogorov, A. N., Tikhomirov, V. M.: $\epsilon$-entropy and $\epsilon$-capacity of sets in function spaces. Usp. Mat. Nauk 14 (1959), 3-86 Russian. | MR | JFM
[17] Krasnosel'skij, M. A., Rutitskij, Y. B.: Convex Functions and Orlicz Spaces. P. Noordhoff, Groningen (1961). | MR | JFM
[18] Leray, J., Schauder, J.: Topologie et équations fonctionnelles. Ann. Sci. Éc. Norm. Supér., III. Ser. 51 (1934), 45-78 French. | DOI | MR | JFM
[19] Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034. Springer, Berlin (1983). | DOI | MR | JFM
[20] Schlüchtermann, G.: Weak compactness in $L_\infty(\mu,X)$. J. Funct. Anal. 125 (1994), 379-388. | DOI | MR | JFM
[21] Shi, S., Shi, Z.: On generalized Young's inequality. Function Spaces XII Banach Center Publications 119. Polish Academy of Sciences, Institute of Mathematics. Warsaw (2019), 295-309. | DOI | JFM
[22] Shi, Z., Wang, Y.: Uniformly non-square points and representation of functionals of Orlicz-Bochner sequence spaces. Rocky Mt. J. Math. 48 (2018), 639-660. | DOI | MR | JFM
[23] Šmulian, V.: On compact sets in the space of measurable functions. Mat. Sb., N. Ser. 15 (1944), 343-346 Russian. | MR | JFM
[24] Wu, Y.: Normed compact sets and weakly $H$-compact in Orlicz space. J. Nature 3 (1982), 234 Chinese.
[25] Wu, C., Wang, T.: Orlicz Spaces and Applications. Heilongjiang Sci. & Tech. Press, Harbin (1983), Chinese.
[26] Zhang, X., Shi, Z.: A criterion of compact set in Orlicz sequence space $l_{(M)}$. J. Changchun Post Telcommunication Institute 15 (1997), 64-67 Chinese.
Cité par Sources :