Projectively equivariant quantization and symbol on supercircle $S^{1|3}$
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1235-1248
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $\mathcal {D}_{\lambda ,\mu } $ be the space of linear differential operators on weighted densities from $\mathcal {F}_{\lambda }$ to $\mathcal {F}_{\mu }$ as module over the orthosymplectic Lie superalgebra $\mathfrak {osp}(3|2)$, where $\mathcal {F}_{\lambda } $, $ł\in \nobreak \mathbb {C}$ is the space of tensor densities of degree $\lambda $ on the supercircle $S^{1|3}$. We prove the existence and uniqueness of projectively equivariant quantization map from the space of symbols to the space of differential operators. An explicite expression of this map is also given.\looseness -1
Let $\mathcal {D}_{\lambda ,\mu } $ be the space of linear differential operators on weighted densities from $\mathcal {F}_{\lambda }$ to $\mathcal {F}_{\mu }$ as module over the orthosymplectic Lie superalgebra $\mathfrak {osp}(3|2)$, where $\mathcal {F}_{\lambda } $, $ł\in \nobreak \mathbb {C}$ is the space of tensor densities of degree $\lambda $ on the supercircle $S^{1|3}$. We prove the existence and uniqueness of projectively equivariant quantization map from the space of symbols to the space of differential operators. An explicite expression of this map is also given.\looseness -1
DOI :
10.21136/CMJ.2021.0149-19
Classification :
17B10, 17B66, 53D10
Keywords: differential operator; density; equivariant quantization and orthosymplectic algebra
Keywords: differential operator; density; equivariant quantization and orthosymplectic algebra
@article{10_21136_CMJ_2021_0149_19,
author = {Bichr, Taher},
title = {Projectively equivariant quantization and symbol on supercircle $S^{1|3}$},
journal = {Czechoslovak Mathematical Journal},
pages = {1235--1248},
year = {2021},
volume = {71},
number = {4},
doi = {10.21136/CMJ.2021.0149-19},
mrnumber = {4339126},
zbl = {07442489},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0149-19/}
}
TY - JOUR
AU - Bichr, Taher
TI - Projectively equivariant quantization and symbol on supercircle $S^{1|3}$
JO - Czechoslovak Mathematical Journal
PY - 2021
SP - 1235
EP - 1248
VL - 71
IS - 4
UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0149-19/
DO - 10.21136/CMJ.2021.0149-19
LA - en
ID - 10_21136_CMJ_2021_0149_19
ER -
%0 Journal Article
%A Bichr, Taher
%T Projectively equivariant quantization and symbol on supercircle $S^{1|3}$
%J Czechoslovak Mathematical Journal
%D 2021
%P 1235-1248
%V 71
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0149-19/
%R 10.21136/CMJ.2021.0149-19
%G en
%F 10_21136_CMJ_2021_0149_19
Bichr, Taher. Projectively equivariant quantization and symbol on supercircle $S^{1|3}$. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1235-1248. doi: 10.21136/CMJ.2021.0149-19
Cité par Sources :