Projectively equivariant quantization and symbol on supercircle $S^{1|3}$
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1235-1248
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathcal {D}_{\lambda ,\mu } $ be the space of linear differential operators on weighted densities from $\mathcal {F}_{\lambda }$ to $\mathcal {F}_{\mu }$ as module over the orthosymplectic Lie superalgebra $\mathfrak {osp}(3|2)$, where $\mathcal {F}_{\lambda } $, $ł\in \nobreak \mathbb {C}$ is the space of tensor densities of degree $\lambda $ on the supercircle $S^{1|3}$. We prove the existence and uniqueness of projectively equivariant quantization map from the space of symbols to the space of differential operators. An explicite expression of this map is also given.\looseness -1
Let $\mathcal {D}_{\lambda ,\mu } $ be the space of linear differential operators on weighted densities from $\mathcal {F}_{\lambda }$ to $\mathcal {F}_{\mu }$ as module over the orthosymplectic Lie superalgebra $\mathfrak {osp}(3|2)$, where $\mathcal {F}_{\lambda } $, $ł\in \nobreak \mathbb {C}$ is the space of tensor densities of degree $\lambda $ on the supercircle $S^{1|3}$. We prove the existence and uniqueness of projectively equivariant quantization map from the space of symbols to the space of differential operators. An explicite expression of this map is also given.\looseness -1
DOI : 10.21136/CMJ.2021.0149-19
Classification : 17B10, 17B66, 53D10
Keywords: differential operator; density; equivariant quantization and orthosymplectic algebra
@article{10_21136_CMJ_2021_0149_19,
     author = {Bichr, Taher},
     title = {Projectively equivariant quantization and symbol on supercircle $S^{1|3}$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1235--1248},
     year = {2021},
     volume = {71},
     number = {4},
     doi = {10.21136/CMJ.2021.0149-19},
     mrnumber = {4339126},
     zbl = {07442489},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0149-19/}
}
TY  - JOUR
AU  - Bichr, Taher
TI  - Projectively equivariant quantization and symbol on supercircle $S^{1|3}$
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 1235
EP  - 1248
VL  - 71
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0149-19/
DO  - 10.21136/CMJ.2021.0149-19
LA  - en
ID  - 10_21136_CMJ_2021_0149_19
ER  - 
%0 Journal Article
%A Bichr, Taher
%T Projectively equivariant quantization and symbol on supercircle $S^{1|3}$
%J Czechoslovak Mathematical Journal
%D 2021
%P 1235-1248
%V 71
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0149-19/
%R 10.21136/CMJ.2021.0149-19
%G en
%F 10_21136_CMJ_2021_0149_19
Bichr, Taher. Projectively equivariant quantization and symbol on supercircle $S^{1|3}$. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 4, pp. 1235-1248. doi: 10.21136/CMJ.2021.0149-19

[1] Duval, C., Lecomte, P., Ovsienko, V.: Conformally equivariant quantization: Existence and uniqueness. Ann. Inst. Fourier 49 (1999), 1999-2029. | DOI | MR | JFM

[2] Grozman, P., Leites, D., Shchepochkina, I.: Invariant operators on supermanifolds and standard models. Multiple Facets of Quantization and Supersymmetry World Scientific, River Edge (2002), 508-555. | DOI | MR | JFM

[3] Lecomte, P. B. A.: Classification projective des espaces d'opérateurs différentiels agissant sur les densités. C. R. Acad. Sci. Paris., Sér. I, Math. 328 (1999), 287-290 French. | DOI | MR | JFM

[4] Lecomte, P. B. A.: Towards projectively equivariant quantization. Prog. Theor. Phys., Suppl. 144 (2001), 125-132. | DOI | MR | JFM

[5] Lecomte, P. B. A., Ovsienko, V. Y.: Projectively equivariant symbol calculus. Lett. Math. Phys. 49 (1999), 173-196. | DOI | MR | JFM

[6] Leites, D. A., Kochetkov, Y., Weintrob, A.: New invariant differential operators on supermanifolds and pseudo-(co)homology. General Topology and Applications Lecture Notes in Pure and Applied Mathematics 134. Marcel Dekker, New York (1991), 217-238. | MR | JFM

[7] Leuther, T., Mathonet, P., Radoux, F.: One $osp(p+1,q+1|2r)$-equivariant quantizations. J. Geom. Phys. 62 (2012), 87-99. | DOI | MR | JFM

[8] Mathonet, P., Radoux, F.: Projectively equivariant quantizations over the superspace $R^{p|q}$. Lett. Math. Phys. 98 (2011), 311-331. | DOI | MR | JFM

[9] Mellouli, N.: Projectively equivariant quantization and symbol calculus in dimension $1|2$. Available at , 9 pages. | arXiv

[10] Ovsienko, V. Y., Ovsienko, O. D., Chekanov, Y. V.: Classification of contact-projective structures on the supercircles. Russ. Math. Surv. 44 (1989), 212-213. | DOI | MR | JFM

[11] Shchepochkina, I.: How to realize a Lie algebra by vector fields. Theor. Math. Phys. 147 (2006), 821-838. | DOI | MR | JFM

Cité par Sources :