The local index density of the perturbed de Rham complex
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 901-932.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A perturbation of the de Rham complex was introduced by Witten for an exact 1-form $\Theta $ and later extended by Novikov for a closed 1-form on a Riemannian manifold $M$. We use invariance theory to show that the perturbed index density is independent of $\Theta $; this result was established previously by J. A. Álvarez López, Y. A. Kordyukov and E. Leichtnam (2020) using other methods. We also show the higher order heat trace asymptotics of the perturbed de Rham complex exhibit nontrivial dependence on $\Theta $. We establish similar results for manifolds with boundary imposing suitable boundary conditions and give an equivariant version for the local Lefschetz trace density. In the setting of the Dolbeault complex, one requires $\Theta $ to be a $\bar \partial $ closed $1$-form to define a local index density; we show in contrast to the de Rham complex, that this exhibits a nontrivial dependence on $\Theta $ even in the setting of Riemann surfaces.
DOI : 10.21136/CMJ.2021.0142-20
Classification : 58J20
Keywords: Witten deformation; local index density; de Rham complex; Dolbeault complex; equivariant index density
@article{10_21136_CMJ_2021_0142_20,
     author = {\'Alvarez L\'opez, Jes\'us and Gilkey, Peter B.},
     title = {The local index density of the perturbed de {Rham} complex},
     journal = {Czechoslovak Mathematical Journal},
     pages = {901--932},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {2021},
     doi = {10.21136/CMJ.2021.0142-20},
     mrnumber = {4295254},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0142-20/}
}
TY  - JOUR
AU  - Álvarez López, Jesús
AU  - Gilkey, Peter B.
TI  - The local index density of the perturbed de Rham complex
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 901
EP  - 932
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0142-20/
DO  - 10.21136/CMJ.2021.0142-20
LA  - en
ID  - 10_21136_CMJ_2021_0142_20
ER  - 
%0 Journal Article
%A Álvarez López, Jesús
%A Gilkey, Peter B.
%T The local index density of the perturbed de Rham complex
%J Czechoslovak Mathematical Journal
%D 2021
%P 901-932
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0142-20/
%R 10.21136/CMJ.2021.0142-20
%G en
%F 10_21136_CMJ_2021_0142_20
Álvarez López, Jesús; Gilkey, Peter B. The local index density of the perturbed de Rham complex. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 901-932. doi : 10.21136/CMJ.2021.0142-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0142-20/

Cité par Sources :