Keywords: uniform regularity; MHD-$P1$; compressible
@article{10_21136_CMJ_2021_0132_20,
author = {Tang, Tong and Sun, Jianzhu},
title = {Uniform regularity for an isentropic compressible {MHD-}$P1$ approximate model arising in radiation hydrodynamics},
journal = {Czechoslovak Mathematical Journal},
pages = {881--890},
year = {2021},
volume = {71},
number = {3},
doi = {10.21136/CMJ.2021.0132-20},
mrnumber = {4295252},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0132-20/}
}
TY - JOUR AU - Tang, Tong AU - Sun, Jianzhu TI - Uniform regularity for an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics JO - Czechoslovak Mathematical Journal PY - 2021 SP - 881 EP - 890 VL - 71 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0132-20/ DO - 10.21136/CMJ.2021.0132-20 LA - en ID - 10_21136_CMJ_2021_0132_20 ER -
%0 Journal Article %A Tang, Tong %A Sun, Jianzhu %T Uniform regularity for an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics %J Czechoslovak Mathematical Journal %D 2021 %P 881-890 %V 71 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0132-20/ %R 10.21136/CMJ.2021.0132-20 %G en %F 10_21136_CMJ_2021_0132_20
Tang, Tong; Sun, Jianzhu. Uniform regularity for an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 881-890. doi: 10.21136/CMJ.2021.0132-20
[1] Alazard, T.: Low Mach number limit of the full Navier-Stokes equations. Arch. Ration. Mech. Anal. 180 (2006), 1-73. | DOI | MR | JFM
[2] Chandrasekhar, S.: Radiative Transfer. Dover Publications, New York (1960). | MR | JFM
[3] Danchin, R., Ducomet, B.: The low Mach number limit for a barotropic model of radiative flow. SIAM J. Math. Anal. 48 (2016), 1025-1053. | DOI | MR | JFM
[4] Dou, C., Jiang, S., Ou, Y.: Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain. J. Differ. Equations 258 (2015), 379-398. | DOI | MR | JFM
[5] Fan, J., Li, F., Nakamura, G.: Non-relativistic and low Mach number limits of two $P1$ approximation model arising in radiation hydrodynamics. Commun. Math. Sci. 14 (2016), 2023-2036. | DOI | MR | JFM
[6] Fan, J., Li, F., Nakamura, G.: Local well-posedness and blow-up criterion for a compressible Navier-Stokes-Fourier-$P1$ approximate model arising in radiation hydrodynamics. Math. Methods Appl. Sci. 40 (2017), 6987-6997. | DOI | MR | JFM
[7] Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and its Applications 26. Oxford University Press, Oxford (2004). | DOI | MR | JFM
[8] Feireisl, E.: On the motion of a viscous, compressible, and heat conducting fluid. Indiana Univ. Math. J. 53 (2004), 1705-1738. | DOI | MR | JFM
[9] Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3 (2001), 358-392. | DOI | MR | JFM
[10] Gong, H., Li, J., Liu, X.-G., Zhang, X.: Local well-posedness of isentropic compressible Navier-Stokes equations with vacuum. Commun. Math. Sci. 18 (2020), 1891-1909. | DOI | MR
[11] He, F., Fan, J., Zhou, Y.: Local well-posedness and blow-up criterion for a compressible Navier-Stokes-$P1$ approximate model arising in radiation hydrodynamics. ZAMM, Z. Angew. Math. Mech. 98 (2018), 1632-1641. | DOI | MR
[12] Huang, X.: On local strong and classical solutions to the three-dimensional barotropic compressible Navier-Stokes equations with vacuum. (to appear) in Sci. China, Math. | DOI
[13] Jiang, S., Li, F., Xie, F.: Non-relativistic limit of the compressible Navier-Stokes-Fourier-$P1$ approximation model arising in radiation hydrodynamics. SIAM J. Math. Anal. 47 (2015), 3726-3746. | DOI | MR | JFM
[14] Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41 (1988), 891-907. | DOI | MR | JFM
[15] Métivier, G., Schochet, S.: The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158 (2001), 61-90. | DOI | MR | JFM
[16] Novotný, A., Straškraba, I.: Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications 27. Oxford University Press, Oxford (2004). | MR | JFM
[17] Triebel, H.: Theory of Function Spaces. Monographs in Mathematics 78. Birkhäuser, Basel (1983). | DOI | MR | JFM
[18] Vol'pert, A. I., Khudyaev, S. I.: Cauchy problem for composite systems of nonlinear differential equations. Mat. Sb., N. Ser. 87 (1972), 504-528 Russian. | DOI | MR | JFM
[19] Xie, F., Klingenberg, C.: A limit problem for three-dimensional ideal compressible radiation magneto-hydrodynamics. Anal. Appl., Singap. 16 (2018), 85-102. | DOI | MR | JFM
Cité par Sources :