Uniform regularity for an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 881-890
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is well known that people can derive the radiation MHD model from an \hbox {MHD-$P1$} approximate model. As pointed out by F. Xie and C. Klingenberg (2018), the uniform regularity estimates play an important role in the convergence from an MHD-$P1$ approximate model to the radiation MHD model. The aim of this paper is to prove the uniform regularity of strong solutions to an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics. Here we use the bilinear commutator and product estimates to obtain our result.
It is well known that people can derive the radiation MHD model from an \hbox {MHD-$P1$} approximate model. As pointed out by F. Xie and C. Klingenberg (2018), the uniform regularity estimates play an important role in the convergence from an MHD-$P1$ approximate model to the radiation MHD model. The aim of this paper is to prove the uniform regularity of strong solutions to an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics. Here we use the bilinear commutator and product estimates to obtain our result.
DOI : 10.21136/CMJ.2021.0132-20
Classification : 35B25, 35Q30, 35Q35
Keywords: uniform regularity; MHD-$P1$; compressible
@article{10_21136_CMJ_2021_0132_20,
     author = {Tang, Tong and Sun, Jianzhu},
     title = {Uniform regularity for an isentropic compressible {MHD-}$P1$ approximate model arising in radiation hydrodynamics},
     journal = {Czechoslovak Mathematical Journal},
     pages = {881--890},
     year = {2021},
     volume = {71},
     number = {3},
     doi = {10.21136/CMJ.2021.0132-20},
     mrnumber = {4295252},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0132-20/}
}
TY  - JOUR
AU  - Tang, Tong
AU  - Sun, Jianzhu
TI  - Uniform regularity for an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 881
EP  - 890
VL  - 71
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0132-20/
DO  - 10.21136/CMJ.2021.0132-20
LA  - en
ID  - 10_21136_CMJ_2021_0132_20
ER  - 
%0 Journal Article
%A Tang, Tong
%A Sun, Jianzhu
%T Uniform regularity for an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics
%J Czechoslovak Mathematical Journal
%D 2021
%P 881-890
%V 71
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0132-20/
%R 10.21136/CMJ.2021.0132-20
%G en
%F 10_21136_CMJ_2021_0132_20
Tang, Tong; Sun, Jianzhu. Uniform regularity for an isentropic compressible MHD-$P1$ approximate model arising in radiation hydrodynamics. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 881-890. doi: 10.21136/CMJ.2021.0132-20

[1] Alazard, T.: Low Mach number limit of the full Navier-Stokes equations. Arch. Ration. Mech. Anal. 180 (2006), 1-73. | DOI | MR | JFM

[2] Chandrasekhar, S.: Radiative Transfer. Dover Publications, New York (1960). | MR | JFM

[3] Danchin, R., Ducomet, B.: The low Mach number limit for a barotropic model of radiative flow. SIAM J. Math. Anal. 48 (2016), 1025-1053. | DOI | MR | JFM

[4] Dou, C., Jiang, S., Ou, Y.: Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain. J. Differ. Equations 258 (2015), 379-398. | DOI | MR | JFM

[5] Fan, J., Li, F., Nakamura, G.: Non-relativistic and low Mach number limits of two $P1$ approximation model arising in radiation hydrodynamics. Commun. Math. Sci. 14 (2016), 2023-2036. | DOI | MR | JFM

[6] Fan, J., Li, F., Nakamura, G.: Local well-posedness and blow-up criterion for a compressible Navier-Stokes-Fourier-$P1$ approximate model arising in radiation hydrodynamics. Math. Methods Appl. Sci. 40 (2017), 6987-6997. | DOI | MR | JFM

[7] Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and its Applications 26. Oxford University Press, Oxford (2004). | DOI | MR | JFM

[8] Feireisl, E.: On the motion of a viscous, compressible, and heat conducting fluid. Indiana Univ. Math. J. 53 (2004), 1705-1738. | DOI | MR | JFM

[9] Feireisl, E., Novotný, A., Petzeltová, H.: On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech. 3 (2001), 358-392. | DOI | MR | JFM

[10] Gong, H., Li, J., Liu, X.-G., Zhang, X.: Local well-posedness of isentropic compressible Navier-Stokes equations with vacuum. Commun. Math. Sci. 18 (2020), 1891-1909. | DOI | MR

[11] He, F., Fan, J., Zhou, Y.: Local well-posedness and blow-up criterion for a compressible Navier-Stokes-$P1$ approximate model arising in radiation hydrodynamics. ZAMM, Z. Angew. Math. Mech. 98 (2018), 1632-1641. | DOI | MR

[12] Huang, X.: On local strong and classical solutions to the three-dimensional barotropic compressible Navier-Stokes equations with vacuum. (to appear) in Sci. China, Math. | DOI

[13] Jiang, S., Li, F., Xie, F.: Non-relativistic limit of the compressible Navier-Stokes-Fourier-$P1$ approximation model arising in radiation hydrodynamics. SIAM J. Math. Anal. 47 (2015), 3726-3746. | DOI | MR | JFM

[14] Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41 (1988), 891-907. | DOI | MR | JFM

[15] Métivier, G., Schochet, S.: The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158 (2001), 61-90. | DOI | MR | JFM

[16] Novotný, A., Straškraba, I.: Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications 27. Oxford University Press, Oxford (2004). | MR | JFM

[17] Triebel, H.: Theory of Function Spaces. Monographs in Mathematics 78. Birkhäuser, Basel (1983). | DOI | MR | JFM

[18] Vol'pert, A. I., Khudyaev, S. I.: Cauchy problem for composite systems of nonlinear differential equations. Mat. Sb., N. Ser. 87 (1972), 504-528 Russian. | DOI | MR | JFM

[19] Xie, F., Klingenberg, C.: A limit problem for three-dimensional ideal compressible radiation magneto-hydrodynamics. Anal. Appl., Singap. 16 (2018), 85-102. | DOI | MR | JFM

Cité par Sources :