Keywords: Freiman ideal; number of generator; power of ideal; Ratliff-Rush closure
@article{10_21136_CMJ_2021_0124_20,
author = {Al-Ayyoub, Ibrahim and Nasernejad, Mehrdad},
title = {Monomial ideals with tiny squares and {Freiman} ideals},
journal = {Czechoslovak Mathematical Journal},
pages = {847--864},
year = {2021},
volume = {71},
number = {3},
doi = {10.21136/CMJ.2021.0124-20},
mrnumber = {4295250},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0124-20/}
}
TY - JOUR AU - Al-Ayyoub, Ibrahim AU - Nasernejad, Mehrdad TI - Monomial ideals with tiny squares and Freiman ideals JO - Czechoslovak Mathematical Journal PY - 2021 SP - 847 EP - 864 VL - 71 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0124-20/ DO - 10.21136/CMJ.2021.0124-20 LA - en ID - 10_21136_CMJ_2021_0124_20 ER -
%0 Journal Article %A Al-Ayyoub, Ibrahim %A Nasernejad, Mehrdad %T Monomial ideals with tiny squares and Freiman ideals %J Czechoslovak Mathematical Journal %D 2021 %P 847-864 %V 71 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0124-20/ %R 10.21136/CMJ.2021.0124-20 %G en %F 10_21136_CMJ_2021_0124_20
Al-Ayyoub, Ibrahim; Nasernejad, Mehrdad. Monomial ideals with tiny squares and Freiman ideals. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 847-864. doi: 10.21136/CMJ.2021.0124-20
[1] Al-Ayyoub, I.: An algorithm for computing the Ratliff-Rush closure. J. Algebra Appl. 8 (2009), 521-532. | DOI | MR | JFM
[2] Al-Ayyoub, I.: On the reduction numbers of monomial ideals. J. Algebra Appl. 19 (2020), Article ID 2050201, 27 pages. | DOI | MR | JFM
[3] Al-Ayyoub, I., Jaradat, M., Al-Zoubi, K.: A note on the ascending chain condition of ideals. J. Algebra Appl. 19 (2020), Article ID 2050135, 19 pages. | DOI | MR | JFM
[4] Decker, W., Greuel, G-M., Pfister, G., Schönemann, H.: Singular 4-0-2: A computer algebra system for polynomial computations. Available at http://www.singular.uni-kl.de (2015). | MR
[5] Eliahou, S., Herzog, J., Saem, M. M.: Monomial ideals with tiny squares. J. Algebra 514 (2018), 99-112. | DOI | MR | JFM
[6] Freiman, G. A.: Foundations of a Structural Theory of Set Addition. Translations of Mathematical Monographs 37. American Mathematical Society, Providence (1973). | DOI | MR | JFM
[7] Herzog, J., Hibi, T.: Monomial Ideals. Graduate Text in Mathematics 206. Springer, London (2011). | DOI | MR | JFM
[8] Herzog, J., Qureshi, A. A., Saem, M. M.: The fiber cone of a monomial ideal in two variables. J. Symb. Comput. 94 (2019), 52-69. | DOI | MR | JFM
[9] Herzog, J., Saem, M. M., Zamani, N.: The number of generators of powers of an ideal. Int. J. Algebra Comput. 29 (2019), 827-847. | DOI | MR | JFM
[10] Herzog, J., Zhu, G.: Freiman ideals. Commun. Algebra 47 (2019), 407-423. | DOI | MR | JFM
[11] Swanson, I., Huneke, C.: Integral Closure of Ideals, Rings, and Modules. London Mathematical Society Lecture Note Series 336. Cambridge University Press, Cambridge (2006). | MR | JFM
Cité par Sources :