Finite groups with some SS-supplemented subgroups
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 837-846
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A subgroup $H$ of a finite group $G$ is said to be SS-supplemented in $G$ if there exists a subgroup $K$ of $G$ such that $G=HK$ and $H\cap K$ is S-quasinormal in $K$. We analyze how certain properties of SS-supplemented subgroups influence the structure of finite groups. Our results improve and generalize several recent results.
A subgroup $H$ of a finite group $G$ is said to be SS-supplemented in $G$ if there exists a subgroup $K$ of $G$ such that $G=HK$ and $H\cap K$ is S-quasinormal in $K$. We analyze how certain properties of SS-supplemented subgroups influence the structure of finite groups. Our results improve and generalize several recent results.
DOI : 10.21136/CMJ.2021.0110-20
Classification : 20D10, 20D20
Keywords: SS-supplemented subgroup; maximal subgroup; solvable group; minimal subgroup
@article{10_21136_CMJ_2021_0110_20,
     author = {Jiang, Mengling and Liu, Jianjun},
     title = {Finite groups with some {SS-supplemented} subgroups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {837--846},
     year = {2021},
     volume = {71},
     number = {3},
     doi = {10.21136/CMJ.2021.0110-20},
     mrnumber = {4295249},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0110-20/}
}
TY  - JOUR
AU  - Jiang, Mengling
AU  - Liu, Jianjun
TI  - Finite groups with some SS-supplemented subgroups
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 837
EP  - 846
VL  - 71
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0110-20/
DO  - 10.21136/CMJ.2021.0110-20
LA  - en
ID  - 10_21136_CMJ_2021_0110_20
ER  - 
%0 Journal Article
%A Jiang, Mengling
%A Liu, Jianjun
%T Finite groups with some SS-supplemented subgroups
%J Czechoslovak Mathematical Journal
%D 2021
%P 837-846
%V 71
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0110-20/
%R 10.21136/CMJ.2021.0110-20
%G en
%F 10_21136_CMJ_2021_0110_20
Jiang, Mengling; Liu, Jianjun. Finite groups with some SS-supplemented subgroups. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 837-846. doi: 10.21136/CMJ.2021.0110-20

[1] Asaad, M., Ballester-Bolinches, A., Aguilera, M. C. Pedraza: A note on minimal subgroups of finite groups. Commun. Algebra 24 (1996), 2771-2776. | DOI | MR | JFM

[2] Baer, R.: Classes of finite groups and their properties. Ill. J. Math. 1 (1957), 115-187. | DOI | MR | JFM

[3] Ballester-Bolinches, A.: $h$-normalizers and local definition of saturated formation of finite groups. Isr. J. Math. 67 (1989), 312-326. | DOI | MR | JFM

[4] Doerk, K., Hawkes, T.: Finite Soluble Groups. De Gruyter Expositions in Mathematics 4. Walter de Gruyter, Berlin (1992). | DOI | MR | JFM

[5] Dornhoff, L.: $M$-groups and 2-groups. Math. Z. 100 (1967), 226-256. | DOI | MR | JFM

[6] Guo, X., Lu, J.: On $SS$-supplemented subgroups of finite groups and their properties. Glasg. Math. J. 54 (2012), 481-491. | DOI | MR | JFM

[7] Guo, X., Shum, K. P.: Cover-avoidance properties and the stucture of finite groups. J. Pure Appl. Algebra 181 (2003), 297-308. | DOI | MR | JFM

[8] Huppert, B.: Endliche Gruppen I. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 134. Springer, Berlin (1967), German. | DOI | MR | JFM

[9] Itô, N.: Über eine zur Frattini-Gruppe duale Bildung. Nagoya Math. J. 9 (1955), 123-127 German. | DOI | MR | JFM

[10] Kegel, O. H.: Sylow-Gruppen und Subnormalteiler endlicher Gruppen. Math. Z. 78 (1962), 205-221 German. | DOI | MR | JFM

[11] Lu, J., Guo, X., Li, X.: The influence of minimal subgroups on the stucture of finite groups. J. Algebra Appl. 12 (2013), Article ID 1250189, 8 pages. | DOI | MR | JFM

[12] Lu, J., Qiu, Y.: On solvability of finite groups with some $SS$-supplemented subgroups. Czech. Math. J. 65 (2015), 427-433. | DOI | MR | JFM

[13] Mukherjee, N. P., Bhattacharya, P.: On the intersection of a class of maximal subgroups of a finite group. Can. J. Math. 39 (1987), 603-611. | DOI | MR | JFM

[14] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80. Springer, New York (1982). | DOI | MR | JFM

[15] Rose, J.: On finite insolvable groups with nilpotent maximal subgroups. J. Algebra 48 (1977), 182-196. | DOI | MR | JFM

[16] Schmid, P.: Subgroups permutable with all Sylow subgroups. J. Algebra 207 (1998), 285-293. | DOI | MR | JFM

[17] Skiba, A. N.: On weakly $s$-permutable subgroups of finite groups. J. Algebra 315 (2007), 192-209. | DOI | MR | JFM

Cité par Sources :