On a Kleinecke-Shirokov theorem
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 817-822
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove that for normal operators $N_1, N_2\in \mathcal {L(H)},$ the generalized commutator $[N_1, N_2; X]$ approaches zero when $[N_1,N_2; [N_1, N_2; X]]$ tends to zero in the norm of the Schatten-von Neumann class $\mathcal {C}_p$ with $p>1$ and $X$ varies in a bounded set of such a class.
We prove that for normal operators $N_1, N_2\in \mathcal {L(H)},$ the generalized commutator $[N_1, N_2; X]$ approaches zero when $[N_1,N_2; [N_1, N_2; X]]$ tends to zero in the norm of the Schatten-von Neumann class $\mathcal {C}_p$ with $p>1$ and $X$ varies in a bounded set of such a class.
DOI : 10.21136/CMJ.2021.0103-20
Classification : 47B10, 47B20, 47B47
Keywords: Kleinecke-Shirokov theorem; generalized commutator
@article{10_21136_CMJ_2021_0103_20,
     author = {Lauric, Vasile},
     title = {On a {Kleinecke-Shirokov} theorem},
     journal = {Czechoslovak Mathematical Journal},
     pages = {817--822},
     year = {2021},
     volume = {71},
     number = {3},
     doi = {10.21136/CMJ.2021.0103-20},
     mrnumber = {4295247},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0103-20/}
}
TY  - JOUR
AU  - Lauric, Vasile
TI  - On a Kleinecke-Shirokov theorem
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 817
EP  - 822
VL  - 71
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0103-20/
DO  - 10.21136/CMJ.2021.0103-20
LA  - en
ID  - 10_21136_CMJ_2021_0103_20
ER  - 
%0 Journal Article
%A Lauric, Vasile
%T On a Kleinecke-Shirokov theorem
%J Czechoslovak Mathematical Journal
%D 2021
%P 817-822
%V 71
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0103-20/
%R 10.21136/CMJ.2021.0103-20
%G en
%F 10_21136_CMJ_2021_0103_20
Lauric, Vasile. On a Kleinecke-Shirokov theorem. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 817-822. doi: 10.21136/CMJ.2021.0103-20

[1] Abdessemed, A., Davies, E. B.: Some commutator estimates in the Schatten classes. J. Lond. Math. Soc., II. Ser. 39 (1989), 299-308. | DOI | MR | JFM

[2] Ackermans, S. T. M., Eijndhoven, S. J. L. van, Martens, F. J. L.: On almost commuting operators. Indag. Math. 45 (1983), 385-391. | DOI | MR | JFM

[3] Kleinecke, D. C.: On operator commutators. Proc. Am. Math. Soc. 8 (1957), 535-536. | DOI | MR | JFM

[4] Shirokov, F. V.: Proof of a conjecutre of Kaplansky. Usp. Mat. Nauk 11 (1956), 167-168 Russian. | MR | JFM

[5] Shulman, V.: Some remarks on the Fuglede-Weiss theorem. Bull. Lond. Math. Soc. 28 (1996), 385-392. | DOI | MR | JFM

[6] Shulman, V., Turowska, L.: Operator synthesis. II: Individual synthesis and linear operator equations. J. Reine Angew. Math. 590 (2006), 143-187. | DOI | MR | JFM

Cité par Sources :