On a Kleinecke-Shirokov theorem
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 817-822
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove that for normal operators $N_1, N_2\in \mathcal {L(H)},$ the generalized commutator $[N_1, N_2; X]$ approaches zero when $[N_1,N_2; [N_1, N_2; X]]$ tends to zero in the norm of the Schatten-von Neumann class $\mathcal {C}_p$ with $p>1$ and $X$ varies in a bounded set of such a class.
DOI :
10.21136/CMJ.2021.0103-20
Classification :
47B10, 47B20, 47B47
Keywords: Kleinecke-Shirokov theorem; generalized commutator
Keywords: Kleinecke-Shirokov theorem; generalized commutator
@article{10_21136_CMJ_2021_0103_20,
author = {Lauric, Vasile},
title = {On a {Kleinecke-Shirokov} theorem},
journal = {Czechoslovak Mathematical Journal},
pages = {817--822},
publisher = {mathdoc},
volume = {71},
number = {3},
year = {2021},
doi = {10.21136/CMJ.2021.0103-20},
mrnumber = {4295247},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0103-20/}
}
TY - JOUR AU - Lauric, Vasile TI - On a Kleinecke-Shirokov theorem JO - Czechoslovak Mathematical Journal PY - 2021 SP - 817 EP - 822 VL - 71 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0103-20/ DO - 10.21136/CMJ.2021.0103-20 LA - en ID - 10_21136_CMJ_2021_0103_20 ER -
Lauric, Vasile. On a Kleinecke-Shirokov theorem. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 817-822. doi: 10.21136/CMJ.2021.0103-20
Cité par Sources :