Unconditional uniqueness of higher order nonlinear Schrödinger equations
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 709-742
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data $u_{0}\in X$, where $X\in \{M_{2,q}^{s}(\mathbb {R}), H^{\sigma }(\mathbb {T}), H^{s_{1}}(\mathbb {R})+H^{s_{2}}(\mathbb {T})\}$ and $q\in [1,2]$, $s\geq 0$, or $\sigma \geq 0$, or $s_{2}\geq s_{1}\geq 0$. Moreover, if $M_{2,q}^{s}(\mathbb {R})\hookrightarrow L^{3}(\mathbb {R})$, or if $\sigma \geq \frac 16$, or if $s_{1}\geq \frac 16$ and $s_{2}>\frac 12$ we show that the Cauchy problem is unconditionally wellposed in $X$. Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ the normal form reduction via the differentiation by parts technique and build upon our previous work.
DOI :
10.21136/CMJ.2021.0078-20
Classification :
35A01, 35A02, 35D30, 35J30
Keywords: normal form method; modulation space; unconditional uniqueness; higher order nonlinear Schrödinger
Keywords: normal form method; modulation space; unconditional uniqueness; higher order nonlinear Schrödinger
@article{10_21136_CMJ_2021_0078_20,
author = {Klaus, Friedrich and Kunstmann, Peer and Pattakos, Nikolaos},
title = {Unconditional uniqueness of higher order nonlinear {Schr\"odinger} equations},
journal = {Czechoslovak Mathematical Journal},
pages = {709--742},
publisher = {mathdoc},
volume = {71},
number = {3},
year = {2021},
doi = {10.21136/CMJ.2021.0078-20},
mrnumber = {4295241},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0078-20/}
}
TY - JOUR AU - Klaus, Friedrich AU - Kunstmann, Peer AU - Pattakos, Nikolaos TI - Unconditional uniqueness of higher order nonlinear Schrödinger equations JO - Czechoslovak Mathematical Journal PY - 2021 SP - 709 EP - 742 VL - 71 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0078-20/ DO - 10.21136/CMJ.2021.0078-20 LA - en ID - 10_21136_CMJ_2021_0078_20 ER -
%0 Journal Article %A Klaus, Friedrich %A Kunstmann, Peer %A Pattakos, Nikolaos %T Unconditional uniqueness of higher order nonlinear Schrödinger equations %J Czechoslovak Mathematical Journal %D 2021 %P 709-742 %V 71 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0078-20/ %R 10.21136/CMJ.2021.0078-20 %G en %F 10_21136_CMJ_2021_0078_20
Klaus, Friedrich; Kunstmann, Peer; Pattakos, Nikolaos. Unconditional uniqueness of higher order nonlinear Schrödinger equations. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 709-742. doi: 10.21136/CMJ.2021.0078-20
Cité par Sources :