Unconditional uniqueness of higher order nonlinear Schrödinger equations
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 709-742.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data $u_{0}\in X$, where $X\in \{M_{2,q}^{s}(\mathbb {R}), H^{\sigma }(\mathbb {T}), H^{s_{1}}(\mathbb {R})+H^{s_{2}}(\mathbb {T})\}$ and $q\in [1,2]$, $s\geq 0$, or $\sigma \geq 0$, or $s_{2}\geq s_{1}\geq 0$. Moreover, if $M_{2,q}^{s}(\mathbb {R})\hookrightarrow L^{3}(\mathbb {R})$, or if $\sigma \geq \frac 16$, or if $s_{1}\geq \frac 16$ and $s_{2}>\frac 12$ we show that the Cauchy problem is unconditionally wellposed in $X$. Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ the normal form reduction via the differentiation by parts technique and build upon our previous work.
DOI : 10.21136/CMJ.2021.0078-20
Classification : 35A01, 35A02, 35D30, 35J30
Keywords: normal form method; modulation space; unconditional uniqueness; higher order nonlinear Schrödinger
@article{10_21136_CMJ_2021_0078_20,
     author = {Klaus, Friedrich and Kunstmann, Peer and Pattakos, Nikolaos},
     title = {Unconditional uniqueness of higher order nonlinear {Schr\"odinger} equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {709--742},
     publisher = {mathdoc},
     volume = {71},
     number = {3},
     year = {2021},
     doi = {10.21136/CMJ.2021.0078-20},
     mrnumber = {4295241},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0078-20/}
}
TY  - JOUR
AU  - Klaus, Friedrich
AU  - Kunstmann, Peer
AU  - Pattakos, Nikolaos
TI  - Unconditional uniqueness of higher order nonlinear Schrödinger equations
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 709
EP  - 742
VL  - 71
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0078-20/
DO  - 10.21136/CMJ.2021.0078-20
LA  - en
ID  - 10_21136_CMJ_2021_0078_20
ER  - 
%0 Journal Article
%A Klaus, Friedrich
%A Kunstmann, Peer
%A Pattakos, Nikolaos
%T Unconditional uniqueness of higher order nonlinear Schrödinger equations
%J Czechoslovak Mathematical Journal
%D 2021
%P 709-742
%V 71
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0078-20/
%R 10.21136/CMJ.2021.0078-20
%G en
%F 10_21136_CMJ_2021_0078_20
Klaus, Friedrich; Kunstmann, Peer; Pattakos, Nikolaos. Unconditional uniqueness of higher order nonlinear Schrödinger equations. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 709-742. doi : 10.21136/CMJ.2021.0078-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0078-20/

Cité par Sources :