Unconditional uniqueness of higher order nonlinear Schrödinger equations
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 709-742
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data $u_{0}\in X$, where $X\in \{M_{2,q}^{s}(\mathbb {R}), H^{\sigma }(\mathbb {T}), H^{s_{1}}(\mathbb {R})+H^{s_{2}}(\mathbb {T})\}$ and $q\in [1,2]$, $s\geq 0$, or $\sigma \geq 0$, or $s_{2}\geq s_{1}\geq 0$. Moreover, if $M_{2,q}^{s}(\mathbb {R})\hookrightarrow L^{3}(\mathbb {R})$, or if $\sigma \geq \frac 16$, or if $s_{1}\geq \frac 16$ and $s_{2}>\frac 12$ we show that the Cauchy problem is unconditionally wellposed in $X$. Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ the normal form reduction via the differentiation by parts technique and build upon our previous work.
We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic fourth order nonlinear Schrödinger equation with the initial data $u_{0}\in X$, where $X\in \{M_{2,q}^{s}(\mathbb {R}), H^{\sigma }(\mathbb {T}), H^{s_{1}}(\mathbb {R})+H^{s_{2}}(\mathbb {T})\}$ and $q\in [1,2]$, $s\geq 0$, or $\sigma \geq 0$, or $s_{2}\geq s_{1}\geq 0$. Moreover, if $M_{2,q}^{s}(\mathbb {R})\hookrightarrow L^{3}(\mathbb {R})$, or if $\sigma \geq \frac 16$, or if $s_{1}\geq \frac 16$ and $s_{2}>\frac 12$ we show that the Cauchy problem is unconditionally wellposed in $X$. Similar results hold true for all higher order nonlinear Schrödinger equations and mixed order NLS due to a factorization property of the corresponding phase factors. For the proof we employ the normal form reduction via the differentiation by parts technique and build upon our previous work.
DOI : 10.21136/CMJ.2021.0078-20
Classification : 35A01, 35A02, 35D30, 35J30
Keywords: normal form method; modulation space; unconditional uniqueness; higher order nonlinear Schrödinger
@article{10_21136_CMJ_2021_0078_20,
     author = {Klaus, Friedrich and Kunstmann, Peer and Pattakos, Nikolaos},
     title = {Unconditional uniqueness of higher order nonlinear {Schr\"odinger} equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {709--742},
     year = {2021},
     volume = {71},
     number = {3},
     doi = {10.21136/CMJ.2021.0078-20},
     mrnumber = {4295241},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0078-20/}
}
TY  - JOUR
AU  - Klaus, Friedrich
AU  - Kunstmann, Peer
AU  - Pattakos, Nikolaos
TI  - Unconditional uniqueness of higher order nonlinear Schrödinger equations
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 709
EP  - 742
VL  - 71
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0078-20/
DO  - 10.21136/CMJ.2021.0078-20
LA  - en
ID  - 10_21136_CMJ_2021_0078_20
ER  - 
%0 Journal Article
%A Klaus, Friedrich
%A Kunstmann, Peer
%A Pattakos, Nikolaos
%T Unconditional uniqueness of higher order nonlinear Schrödinger equations
%J Czechoslovak Mathematical Journal
%D 2021
%P 709-742
%V 71
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0078-20/
%R 10.21136/CMJ.2021.0078-20
%G en
%F 10_21136_CMJ_2021_0078_20
Klaus, Friedrich; Kunstmann, Peer; Pattakos, Nikolaos. Unconditional uniqueness of higher order nonlinear Schrödinger equations. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 709-742. doi: 10.21136/CMJ.2021.0078-20

[1] Babin, A. V., Ilyin, A. A., Titi, E. S.: On the regularization mechanism for the periodic Korteweg-de Vries equation. Commun. Pure Appl. Math. 64 (2011), 591-648. | DOI | MR | JFM

[2] Ben-Artzi, M., Koch, H., Saut, J.-C.: Dispersion estimates for fourth order Schrödinger equations. C. R. Acad. Sci., Paris, Sér. I, Math. 330 (2000), 87-92. | DOI | MR | JFM

[3] Bényi, Á., Gröchenig, K., Okoudjou, K., Rogers, L. G.: Unimodular Fourier multipliers for modulation spaces. J. Funct. Anal. 246 (2007), 366-384. | DOI | MR | JFM

[4] Boulenger, T., Lenzmann, E.: Blowup for biharmonic NLS. Ann. Scient. Éc. Norm. Supér. (4) 50 (2017), 503-544. | DOI | MR | JFM

[5] Chaichenets, L., Hundertmark, D., Kunstmann, P., Pattakos, N.: Knocking out teeth in one-dimensional periodic nonlinear Schrödinger equation. SIAM J. Math. Anal. 51 (2019), 3714-3749. | DOI | MR | JFM

[6] Chaichenets, L., Hundertmark, D., Kunstmann, P., Pattakos, N.: Nonlinear Schrödinger equation, differentiation by parts and modulation spaces. J. Evol. Equ. 19 (2019), 803-843. | DOI | MR | JFM

[7] Chaichenets, L., Pattakos, N.: The global Cauchy problem for the NLS with higher order anisotropic dispersion. Glasg. Math. J. 63 (2021), 45-53. | DOI | MR | JFM

[8] Choffrut, A., Pocovnicu, O.: Ill-posedness for the cubic nonlinear half-wave equation and other fractional NLS on the real line. Int. Math. Res. Not. 2018 (2018), 699-738. | DOI | MR | JFM

[9] Chowdury, A., Kedziora, D. J., Ankiewicz, A., Akhmediev, N.: Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Phys. Rev. E 90 (2014), Article ID 032922. | DOI

[10] Christ, M.: Nonuniqueness of weak solutions of the nonlinear Schrödinger equation. Available at , 13 pages. | arXiv

[11] Christ, M.: Power series solution of a nonlinear Schrödinger equation. Mathematical Aspects of Nonlinear Dispersive Equations Annals of Mathematics Studies 163. Princeton University Press, Princeton (2007), 131-155. | DOI | MR | JFM

[12] Colliander, J., Oh, T.: Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(\mathbb T)$. Duke Math. J. 161 (2012), 367-414. | DOI | MR | JFM

[13] Feichtinger, H. G.: Modulation spaces on locally compact abelian groups. Proceedings of International Conference on Wavelets and Applications 2002 New Delhi Allied Publishers, Delhi (2003), 99-140.

[14] Fibich, G., Ilan, B., Papanicolaou, G.: Self-focusing with fourth-order dispersion. SIAM J. Appl. Math. 62 (2002), 1437-1462. | DOI | MR | JFM

[15] Gubinelli, M.: Rough solutions for the periodic Korteweg-de Vries equation. Commun. Pure Appl. Anal. 11 (2012), 709-733. | DOI | MR | JFM

[16] Guo, S.: On the 1D cubic nonlinear Schrödinger equation in an almost critical space. J. Fourier Anal. Appl. 23 (2017), 91-124. | DOI | MR | JFM

[17] Guo, Z., Kwon, S., Oh, T.: Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS. Commun. Math. Phys. 322 (2013), 19-48. | DOI | MR | JFM

[18] Guo, Z., Oh, T.: Non-existence of solutions for the periodic cubic NLS below $L^2$. Int. Math. Res. Not. 2018 (2018), 1656-1729. | DOI | MR | JFM

[19] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers. Clarendon Press, New York (1979). | MR | JFM

[20] Herr, S., Sohinger, V.: Unconditional uniqueness results for the nonlinear Schrödinger equation. Commun. Contemp. Math. 21 (2019), Article ID 1850058, 33 pages. | DOI | MR | JFM

[21] Kang, Z.-Z., Xia, T.-C., Ma, W.-X.: Riemann-Hilbert approach and $N$-soliton solution for an eighth-order nonlinear Schrödinger equation in an optical fiber. Adv. Difference Equ. 2019 (2019), Article ID 188, 14 pages. | DOI | MR | JFM

[22] Karpman, V. I.: Stabilization of soliton instabilities by higher order dispersion: Fourth- order nonlinear Schrödinger type equations. Phys. Rev. E 53 (1996), 1336-1339. | DOI | MR

[23] Karpman, V. I., Shagalov, A. G.: Stability of solitons described by nonlinear Schrödinger- type equations with higher-order dispersion. Physica D 144 (2000), 194-210. | DOI | MR | JFM

[24] Kato, T.: On nonlinear Schrödinger equations. II. $H^S$-solutions and unconditional well-posedness. J. Anal. Math. 67 (1995), 281-306. | DOI | MR | JFM

[25] Kishimoto, N.: Unconditional uniqueness of solutions for nonlinear dispersive equations. Available at , 48 pages. | arXiv

[26] Miyachi, A., Nicola, F., Rivetti, S., Tabacco, A., Tomita, N.: Estimates for unimodular Fourier multipliers on modulation spaces. Proc. Am. Math. Soc. 137 (2009), 3869-3883. | DOI | MR | JFM

[27] Oh, T., Tzvetkov, N.: Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation. Probab. Theory Relat. Fields 169 (2017), 1121-1168. | DOI | MR | JFM

[28] Oh, T., Wang, Y.: Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces. Forum Math. Sigma 6 (2018), Article ID e5, 80 pages. | DOI | MR | JFM

[29] Oh, T., Wang, Y.: On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle. An. Ştiinţ. Univ. Al. I. Cuza Iaşi., Ser. Nouă, Mat. 64 (2018), 53-84. | MR | JFM

[30] Pattakos, N.: NLS in the modulation space $M_{2,q}(\mathbb R)$. J. Fourier Anal. Appl. 25 (2019), 1447-1486. | DOI | MR | JFM

[31] Pausader, B.: The cubic fourth-order Schrödinger equation. J. Func. Anal. 256 (2009), 2473-2517. | DOI | MR | JFM

[32] Pausader, B., Shao, S.: The mass-critical fourth-order Schrödinger equation in high dimensions. J. Hyperbolic Differ. Equ. 7 (2010), 651-705. | DOI | MR | JFM

[33] Sedletsky, Y. V., Gandzha, I. S.: A sixth-order nonlinear Schrödinger equation as a reduction of the nonlinear Klein-Gordon equation for slowly modulated wave trains. Nonlinear Dyn. 94 (2018), 1921-1932. | DOI

[34] Vargas, A., Vega, L.: Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite $L^2$ norm. J. Math. Pures Appl., IX. Sér. 80 (2001), 1029-1044. | DOI | MR | JFM

[35] Wang, B., Hudzik, H.: The global Cauchy problem for the NLS and NLKG with small rough data. J. Differ. Equations 232 (2007), 36-73. | DOI | MR | JFM

[36] Yue, Y., Huang, L., Chen, Y.: Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 89 (2020), Article ID 105284, 14 pages. | DOI | MR | JFM

Cité par Sources :