Keywords: normal form method; modulation space; unconditional uniqueness; higher order nonlinear Schrödinger
@article{10_21136_CMJ_2021_0078_20,
author = {Klaus, Friedrich and Kunstmann, Peer and Pattakos, Nikolaos},
title = {Unconditional uniqueness of higher order nonlinear {Schr\"odinger} equations},
journal = {Czechoslovak Mathematical Journal},
pages = {709--742},
year = {2021},
volume = {71},
number = {3},
doi = {10.21136/CMJ.2021.0078-20},
mrnumber = {4295241},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0078-20/}
}
TY - JOUR AU - Klaus, Friedrich AU - Kunstmann, Peer AU - Pattakos, Nikolaos TI - Unconditional uniqueness of higher order nonlinear Schrödinger equations JO - Czechoslovak Mathematical Journal PY - 2021 SP - 709 EP - 742 VL - 71 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0078-20/ DO - 10.21136/CMJ.2021.0078-20 LA - en ID - 10_21136_CMJ_2021_0078_20 ER -
%0 Journal Article %A Klaus, Friedrich %A Kunstmann, Peer %A Pattakos, Nikolaos %T Unconditional uniqueness of higher order nonlinear Schrödinger equations %J Czechoslovak Mathematical Journal %D 2021 %P 709-742 %V 71 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0078-20/ %R 10.21136/CMJ.2021.0078-20 %G en %F 10_21136_CMJ_2021_0078_20
Klaus, Friedrich; Kunstmann, Peer; Pattakos, Nikolaos. Unconditional uniqueness of higher order nonlinear Schrödinger equations. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 3, pp. 709-742. doi: 10.21136/CMJ.2021.0078-20
[1] Babin, A. V., Ilyin, A. A., Titi, E. S.: On the regularization mechanism for the periodic Korteweg-de Vries equation. Commun. Pure Appl. Math. 64 (2011), 591-648. | DOI | MR | JFM
[2] Ben-Artzi, M., Koch, H., Saut, J.-C.: Dispersion estimates for fourth order Schrödinger equations. C. R. Acad. Sci., Paris, Sér. I, Math. 330 (2000), 87-92. | DOI | MR | JFM
[3] Bényi, Á., Gröchenig, K., Okoudjou, K., Rogers, L. G.: Unimodular Fourier multipliers for modulation spaces. J. Funct. Anal. 246 (2007), 366-384. | DOI | MR | JFM
[4] Boulenger, T., Lenzmann, E.: Blowup for biharmonic NLS. Ann. Scient. Éc. Norm. Supér. (4) 50 (2017), 503-544. | DOI | MR | JFM
[5] Chaichenets, L., Hundertmark, D., Kunstmann, P., Pattakos, N.: Knocking out teeth in one-dimensional periodic nonlinear Schrödinger equation. SIAM J. Math. Anal. 51 (2019), 3714-3749. | DOI | MR | JFM
[6] Chaichenets, L., Hundertmark, D., Kunstmann, P., Pattakos, N.: Nonlinear Schrödinger equation, differentiation by parts and modulation spaces. J. Evol. Equ. 19 (2019), 803-843. | DOI | MR | JFM
[7] Chaichenets, L., Pattakos, N.: The global Cauchy problem for the NLS with higher order anisotropic dispersion. Glasg. Math. J. 63 (2021), 45-53. | DOI | MR | JFM
[8] Choffrut, A., Pocovnicu, O.: Ill-posedness for the cubic nonlinear half-wave equation and other fractional NLS on the real line. Int. Math. Res. Not. 2018 (2018), 699-738. | DOI | MR | JFM
[9] Chowdury, A., Kedziora, D. J., Ankiewicz, A., Akhmediev, N.: Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Phys. Rev. E 90 (2014), Article ID 032922. | DOI
[10] Christ, M.: Nonuniqueness of weak solutions of the nonlinear Schrödinger equation. Available at , 13 pages. | arXiv
[11] Christ, M.: Power series solution of a nonlinear Schrödinger equation. Mathematical Aspects of Nonlinear Dispersive Equations Annals of Mathematics Studies 163. Princeton University Press, Princeton (2007), 131-155. | DOI | MR | JFM
[12] Colliander, J., Oh, T.: Almost sure well-posedness of the cubic nonlinear Schrödinger equation below $L^2(\mathbb T)$. Duke Math. J. 161 (2012), 367-414. | DOI | MR | JFM
[13] Feichtinger, H. G.: Modulation spaces on locally compact abelian groups. Proceedings of International Conference on Wavelets and Applications 2002 New Delhi Allied Publishers, Delhi (2003), 99-140.
[14] Fibich, G., Ilan, B., Papanicolaou, G.: Self-focusing with fourth-order dispersion. SIAM J. Appl. Math. 62 (2002), 1437-1462. | DOI | MR | JFM
[15] Gubinelli, M.: Rough solutions for the periodic Korteweg-de Vries equation. Commun. Pure Appl. Anal. 11 (2012), 709-733. | DOI | MR | JFM
[16] Guo, S.: On the 1D cubic nonlinear Schrödinger equation in an almost critical space. J. Fourier Anal. Appl. 23 (2017), 91-124. | DOI | MR | JFM
[17] Guo, Z., Kwon, S., Oh, T.: Poincaré-Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS. Commun. Math. Phys. 322 (2013), 19-48. | DOI | MR | JFM
[18] Guo, Z., Oh, T.: Non-existence of solutions for the periodic cubic NLS below $L^2$. Int. Math. Res. Not. 2018 (2018), 1656-1729. | DOI | MR | JFM
[19] Hardy, G. H., Wright, E. M.: An Introduction to the Theory of Numbers. Clarendon Press, New York (1979). | MR | JFM
[20] Herr, S., Sohinger, V.: Unconditional uniqueness results for the nonlinear Schrödinger equation. Commun. Contemp. Math. 21 (2019), Article ID 1850058, 33 pages. | DOI | MR | JFM
[21] Kang, Z.-Z., Xia, T.-C., Ma, W.-X.: Riemann-Hilbert approach and $N$-soliton solution for an eighth-order nonlinear Schrödinger equation in an optical fiber. Adv. Difference Equ. 2019 (2019), Article ID 188, 14 pages. | DOI | MR | JFM
[22] Karpman, V. I.: Stabilization of soliton instabilities by higher order dispersion: Fourth- order nonlinear Schrödinger type equations. Phys. Rev. E 53 (1996), 1336-1339. | DOI | MR
[23] Karpman, V. I., Shagalov, A. G.: Stability of solitons described by nonlinear Schrödinger- type equations with higher-order dispersion. Physica D 144 (2000), 194-210. | DOI | MR | JFM
[24] Kato, T.: On nonlinear Schrödinger equations. II. $H^S$-solutions and unconditional well-posedness. J. Anal. Math. 67 (1995), 281-306. | DOI | MR | JFM
[25] Kishimoto, N.: Unconditional uniqueness of solutions for nonlinear dispersive equations. Available at , 48 pages. | arXiv
[26] Miyachi, A., Nicola, F., Rivetti, S., Tabacco, A., Tomita, N.: Estimates for unimodular Fourier multipliers on modulation spaces. Proc. Am. Math. Soc. 137 (2009), 3869-3883. | DOI | MR | JFM
[27] Oh, T., Tzvetkov, N.: Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation. Probab. Theory Relat. Fields 169 (2017), 1121-1168. | DOI | MR | JFM
[28] Oh, T., Wang, Y.: Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces. Forum Math. Sigma 6 (2018), Article ID e5, 80 pages. | DOI | MR | JFM
[29] Oh, T., Wang, Y.: On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle. An. Ştiinţ. Univ. Al. I. Cuza Iaşi., Ser. Nouă, Mat. 64 (2018), 53-84. | MR | JFM
[30] Pattakos, N.: NLS in the modulation space $M_{2,q}(\mathbb R)$. J. Fourier Anal. Appl. 25 (2019), 1447-1486. | DOI | MR | JFM
[31] Pausader, B.: The cubic fourth-order Schrödinger equation. J. Func. Anal. 256 (2009), 2473-2517. | DOI | MR | JFM
[32] Pausader, B., Shao, S.: The mass-critical fourth-order Schrödinger equation in high dimensions. J. Hyperbolic Differ. Equ. 7 (2010), 651-705. | DOI | MR | JFM
[33] Sedletsky, Y. V., Gandzha, I. S.: A sixth-order nonlinear Schrödinger equation as a reduction of the nonlinear Klein-Gordon equation for slowly modulated wave trains. Nonlinear Dyn. 94 (2018), 1921-1932. | DOI
[34] Vargas, A., Vega, L.: Global wellposedness for 1D non-linear Schrödinger equation for data with an infinite $L^2$ norm. J. Math. Pures Appl., IX. Sér. 80 (2001), 1029-1044. | DOI | MR | JFM
[35] Wang, B., Hudzik, H.: The global Cauchy problem for the NLS and NLKG with small rough data. J. Differ. Equations 232 (2007), 36-73. | DOI | MR | JFM
[36] Yue, Y., Huang, L., Chen, Y.: Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 89 (2020), Article ID 105284, 14 pages. | DOI | MR | JFM
Cité par Sources :