Generalized spectral perturbation and the boundary spectrum
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 603-621.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

By considering arbitrary mappings $\omega $ from a Banach algebra $A$ into the set of all nonempty, compact subsets of the complex plane such that for all $a \in A$, the set $\omega (a)$ lies between the boundary and connected hull of the exponential spectrum of $a$, we create a general framework in which to generalize a number of results involving spectra such as the exponential and singular spectra. In particular, we discover a number of new properties of the boundary spectrum.
DOI : 10.21136/CMJ.2021.0046-20
Classification : 46H10, 47A10
Keywords: exponential spectrum; singular spectrum; boundary spectrum; boundary and hull; (strong) Riesz property; Mobius spectrum
@article{10_21136_CMJ_2021_0046_20,
     author = {Mouton, Sonja},
     title = {Generalized spectral perturbation and the boundary spectrum},
     journal = {Czechoslovak Mathematical Journal},
     pages = {603--621},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2021},
     doi = {10.21136/CMJ.2021.0046-20},
     mrnumber = {4263189},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0046-20/}
}
TY  - JOUR
AU  - Mouton, Sonja
TI  - Generalized spectral perturbation and the boundary spectrum
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 603
EP  - 621
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0046-20/
DO  - 10.21136/CMJ.2021.0046-20
LA  - en
ID  - 10_21136_CMJ_2021_0046_20
ER  - 
%0 Journal Article
%A Mouton, Sonja
%T Generalized spectral perturbation and the boundary spectrum
%J Czechoslovak Mathematical Journal
%D 2021
%P 603-621
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0046-20/
%R 10.21136/CMJ.2021.0046-20
%G en
%F 10_21136_CMJ_2021_0046_20
Mouton, Sonja. Generalized spectral perturbation and the boundary spectrum. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 603-621. doi : 10.21136/CMJ.2021.0046-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0046-20/

Cité par Sources :