Generalized spectral perturbation and the boundary spectrum
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 603-621
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

By considering arbitrary mappings $\omega $ from a Banach algebra $A$ into the set of all nonempty, compact subsets of the complex plane such that for all $a \in A$, the set $\omega (a)$ lies between the boundary and connected hull of the exponential spectrum of $a$, we create a general framework in which to generalize a number of results involving spectra such as the exponential and singular spectra. In particular, we discover a number of new properties of the boundary spectrum.
By considering arbitrary mappings $\omega $ from a Banach algebra $A$ into the set of all nonempty, compact subsets of the complex plane such that for all $a \in A$, the set $\omega (a)$ lies between the boundary and connected hull of the exponential spectrum of $a$, we create a general framework in which to generalize a number of results involving spectra such as the exponential and singular spectra. In particular, we discover a number of new properties of the boundary spectrum.
DOI : 10.21136/CMJ.2021.0046-20
Classification : 46H10, 47A10
Keywords: exponential spectrum; singular spectrum; boundary spectrum; boundary and hull; (strong) Riesz property; Mobius spectrum
@article{10_21136_CMJ_2021_0046_20,
     author = {Mouton, Sonja},
     title = {Generalized spectral perturbation and the boundary spectrum},
     journal = {Czechoslovak Mathematical Journal},
     pages = {603--621},
     year = {2021},
     volume = {71},
     number = {2},
     doi = {10.21136/CMJ.2021.0046-20},
     mrnumber = {4263189},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0046-20/}
}
TY  - JOUR
AU  - Mouton, Sonja
TI  - Generalized spectral perturbation and the boundary spectrum
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 603
EP  - 621
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0046-20/
DO  - 10.21136/CMJ.2021.0046-20
LA  - en
ID  - 10_21136_CMJ_2021_0046_20
ER  - 
%0 Journal Article
%A Mouton, Sonja
%T Generalized spectral perturbation and the boundary spectrum
%J Czechoslovak Mathematical Journal
%D 2021
%P 603-621
%V 71
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0046-20/
%R 10.21136/CMJ.2021.0046-20
%G en
%F 10_21136_CMJ_2021_0046_20
Mouton, Sonja. Generalized spectral perturbation and the boundary spectrum. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 603-621. doi: 10.21136/CMJ.2021.0046-20

[1] Aupetit, B.: Propriétés spectrales des algèbres de Banach. Lecture Notes in Mathematics 735. Springer, Berlin (1979), French. | DOI | MR | JFM

[2] Aupetit, B.: A Primer on Spectral Theory. Universitext. Springer, New York (1991). | DOI | MR | JFM

[3] Burlando, L.: Comparisons between different spectra of an element in a Banach algebra. Int. J. Math. Sci. 16 (1993), 819-822. | DOI | MR | JFM

[4] Conway, J. B.: A Course in Functional Analysis. Graduate Texts in Mathematics 96. Springer, New York (2010). | DOI | MR | JFM

[5] Groenewald, L., Harte, R. E., Raubenheimer, H.: Perturbation by inessential and Riesz elements. Quaest. Math. 12 (1989), 439-446. | DOI | MR | JFM

[6] Groenewald, L., Raubenheimer, H.: A note on the singular and exponential spectrum in Banach algebras. Quaest. Math. 11 (1988), 399-408. | DOI | MR | JFM

[7] Harte, R. E.: The exponential spectrum in Banach algebras. Proc. Am. Math. Soc. 58 (1976), 114-118. | DOI | MR | JFM

[8] Harte, R. E.: Invertibility and Singularity for Bounded Linear Operators. Pure and Applied Mathematics 109. Marcel Dekker, New York (1988). | MR | JFM

[9] Harte, R. E., Wickstead, A. W.: Boundaries, hulls and spectral mapping theorems. Proc. R. Ir. Acad., Sect. A 81 (1981), 201-208. | MR | JFM

[10] Lindeboom, L., Raubenheimer, H.: A note on the singular spectrum. Extr. Math. 13 (1998), 349-357. | MR | JFM

[11] Lindeboom, L., Raubenheimer, H.: Different exponential spectra in Banach algebras. Rocky Mt. J. Math. 29 (1999), 957-970. | DOI | MR | JFM

[12] Lindeboom, L., Raubenheimer, H.: On regularities and Fredholm theory. Czech. Math. J. 52 (2002), 565-574. | DOI | MR | JFM

[13] Mouton, H. du T.: On inessential ideals in Banach algebras. Quaest. Math. 17 (1994), 59-66. | DOI | MR | JFM

[14] Mouton, H. du T., Mouton, S., Raubenheimer, H.: Ruston elements and Fredholm theory relative to arbitrary homomorphisms. Quaest. Math. 34 (2011), 341-359. | DOI | MR | JFM

[15] Mouton, H. du T., Raubenheimer, H.: Fredholm theory relative to two Banach algebra homomorphisms. Quaest. Math. 14 (1991), 371-382. | DOI | MR | JFM

[16] Mouton, S.: On the boundary spectrum in Banach algebras. Bull. Aust. Math. Soc. 74 (2006), 239-246. | DOI | MR | JFM

[17] Mouton, S.: Mapping and continuity properties of the boundary spectrum in Banach algebras. Ill. J. Math. 53 (2009), 757-767. | DOI | MR | JFM

[18] Müller, V.: Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras. Operator Theory: Advances and Applications 139. Birkhäuser, Basel (2007). | DOI | MR | JFM

[19] Raubenheimer, H., Swartz, A.: Radius preserving (semi)regularities in Banach algebras. Quaest. Math. 42 (2019), 811-822. | DOI | MR | JFM

[20] Raubenheimer, H., Swartz, A.: Regularity-type properties of the boundary spectrum in Banach algebras. Rocky Mt. J. Math. 49 (2019), 2747-2754. | DOI | MR | JFM

[21] Taylor, A. E., Lay, D. C.: Introduction to Functional Analysis. John Wiley & Sons, New York (1980). | MR | JFM

[22] Živkovič-Zlatanovič, S. Č., Harte, R. E.: Polynomially Riesz elements. Quaest. Math. 38 (2015), 573-586. | DOI | MR | JFM

Cité par Sources :