Keywords: exponential spectrum; singular spectrum; boundary spectrum; boundary and hull; (strong) Riesz property; Mobius spectrum
@article{10_21136_CMJ_2021_0046_20,
author = {Mouton, Sonja},
title = {Generalized spectral perturbation and the boundary spectrum},
journal = {Czechoslovak Mathematical Journal},
pages = {603--621},
year = {2021},
volume = {71},
number = {2},
doi = {10.21136/CMJ.2021.0046-20},
mrnumber = {4263189},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0046-20/}
}
TY - JOUR AU - Mouton, Sonja TI - Generalized spectral perturbation and the boundary spectrum JO - Czechoslovak Mathematical Journal PY - 2021 SP - 603 EP - 621 VL - 71 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0046-20/ DO - 10.21136/CMJ.2021.0046-20 LA - en ID - 10_21136_CMJ_2021_0046_20 ER -
Mouton, Sonja. Generalized spectral perturbation and the boundary spectrum. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 603-621. doi: 10.21136/CMJ.2021.0046-20
[1] Aupetit, B.: Propriétés spectrales des algèbres de Banach. Lecture Notes in Mathematics 735. Springer, Berlin (1979), French. | DOI | MR | JFM
[2] Aupetit, B.: A Primer on Spectral Theory. Universitext. Springer, New York (1991). | DOI | MR | JFM
[3] Burlando, L.: Comparisons between different spectra of an element in a Banach algebra. Int. J. Math. Sci. 16 (1993), 819-822. | DOI | MR | JFM
[4] Conway, J. B.: A Course in Functional Analysis. Graduate Texts in Mathematics 96. Springer, New York (2010). | DOI | MR | JFM
[5] Groenewald, L., Harte, R. E., Raubenheimer, H.: Perturbation by inessential and Riesz elements. Quaest. Math. 12 (1989), 439-446. | DOI | MR | JFM
[6] Groenewald, L., Raubenheimer, H.: A note on the singular and exponential spectrum in Banach algebras. Quaest. Math. 11 (1988), 399-408. | DOI | MR | JFM
[7] Harte, R. E.: The exponential spectrum in Banach algebras. Proc. Am. Math. Soc. 58 (1976), 114-118. | DOI | MR | JFM
[8] Harte, R. E.: Invertibility and Singularity for Bounded Linear Operators. Pure and Applied Mathematics 109. Marcel Dekker, New York (1988). | MR | JFM
[9] Harte, R. E., Wickstead, A. W.: Boundaries, hulls and spectral mapping theorems. Proc. R. Ir. Acad., Sect. A 81 (1981), 201-208. | MR | JFM
[10] Lindeboom, L., Raubenheimer, H.: A note on the singular spectrum. Extr. Math. 13 (1998), 349-357. | MR | JFM
[11] Lindeboom, L., Raubenheimer, H.: Different exponential spectra in Banach algebras. Rocky Mt. J. Math. 29 (1999), 957-970. | DOI | MR | JFM
[12] Lindeboom, L., Raubenheimer, H.: On regularities and Fredholm theory. Czech. Math. J. 52 (2002), 565-574. | DOI | MR | JFM
[13] Mouton, H. du T.: On inessential ideals in Banach algebras. Quaest. Math. 17 (1994), 59-66. | DOI | MR | JFM
[14] Mouton, H. du T., Mouton, S., Raubenheimer, H.: Ruston elements and Fredholm theory relative to arbitrary homomorphisms. Quaest. Math. 34 (2011), 341-359. | DOI | MR | JFM
[15] Mouton, H. du T., Raubenheimer, H.: Fredholm theory relative to two Banach algebra homomorphisms. Quaest. Math. 14 (1991), 371-382. | DOI | MR | JFM
[16] Mouton, S.: On the boundary spectrum in Banach algebras. Bull. Aust. Math. Soc. 74 (2006), 239-246. | DOI | MR | JFM
[17] Mouton, S.: Mapping and continuity properties of the boundary spectrum in Banach algebras. Ill. J. Math. 53 (2009), 757-767. | DOI | MR | JFM
[18] Müller, V.: Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras. Operator Theory: Advances and Applications 139. Birkhäuser, Basel (2007). | DOI | MR | JFM
[19] Raubenheimer, H., Swartz, A.: Radius preserving (semi)regularities in Banach algebras. Quaest. Math. 42 (2019), 811-822. | DOI | MR | JFM
[20] Raubenheimer, H., Swartz, A.: Regularity-type properties of the boundary spectrum in Banach algebras. Rocky Mt. J. Math. 49 (2019), 2747-2754. | DOI | MR | JFM
[21] Taylor, A. E., Lay, D. C.: Introduction to Functional Analysis. John Wiley & Sons, New York (1980). | MR | JFM
[22] Živkovič-Zlatanovič, S. Č., Harte, R. E.: Polynomially Riesz elements. Quaest. Math. 38 (2015), 573-586. | DOI | MR | JFM
Cité par Sources :