A class of multiplicative lattices
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 591-601
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the multiplicative lattices $L$ which satisfy the condition $ a=(a :\nobreak (a: \nobreak b))(a:b) $ for all $a,b\in L$. Call them sharp lattices. We prove that every totally ordered sharp lattice is isomorphic to the ideal lattice of a valuation domain with value group $\mathbb {Z}$ or $\mathbb {R}$. A sharp lattice $L$ localized at its maximal elements are totally ordered sharp lattices. The converse is true if $L$ has finite character.
We study the multiplicative lattices $L$ which satisfy the condition $ a=(a :\nobreak (a: \nobreak b))(a:b) $ for all $a,b\in L$. Call them sharp lattices. We prove that every totally ordered sharp lattice is isomorphic to the ideal lattice of a valuation domain with value group $\mathbb {Z}$ or $\mathbb {R}$. A sharp lattice $L$ localized at its maximal elements are totally ordered sharp lattices. The converse is true if $L$ has finite character.
DOI : 10.21136/CMJ.2021.0034-20
Classification : 06F99, 13A15, 13F05
Keywords: multiplicative lattice; Prüfer lattice; Prüfer integral domain
@article{10_21136_CMJ_2021_0034_20,
     author = {Dumitrescu, Tiberiu and Epure, Mihai},
     title = {A class of multiplicative lattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {591--601},
     year = {2021},
     volume = {71},
     number = {2},
     doi = {10.21136/CMJ.2021.0034-20},
     mrnumber = {4263188},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0034-20/}
}
TY  - JOUR
AU  - Dumitrescu, Tiberiu
AU  - Epure, Mihai
TI  - A class of multiplicative lattices
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 591
EP  - 601
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0034-20/
DO  - 10.21136/CMJ.2021.0034-20
LA  - en
ID  - 10_21136_CMJ_2021_0034_20
ER  - 
%0 Journal Article
%A Dumitrescu, Tiberiu
%A Epure, Mihai
%T A class of multiplicative lattices
%J Czechoslovak Mathematical Journal
%D 2021
%P 591-601
%V 71
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0034-20/
%R 10.21136/CMJ.2021.0034-20
%G en
%F 10_21136_CMJ_2021_0034_20
Dumitrescu, Tiberiu; Epure, Mihai. A class of multiplicative lattices. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 591-601. doi: 10.21136/CMJ.2021.0034-20

[1] Ahmad, Z., Dumitrescu, T., Epure, M.: A Schreier domain type condition. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 55 (2012), 241-247. | MR | JFM

[2] Anderson, D. D.: Abstract commutative ideal theory without chain condition. Algebra Univers. 6 (1976), 131-145. | DOI | MR | JFM

[3] Anderson, D. D., Jayaram, C.: Principal element lattices. Czech. Math. J. 46 (1996), 99-109. | DOI | MR | JFM

[4] Dumitrescu, T.: A Bazzoni-type theorem for multiplicative lattices. Advances in Rings, Modules and Factorizations Springer Proceedings in Mathematics & Statistics 321. Springer, Cham (2020). | DOI | JFM

[5] Engler, A. J., Prestel, A.: Valued Fields. Springer Monographs in Mathematics. Springer, Berlin (2005). | DOI | MR | JFM

[6] Gilmer, R.: Multiplicative Ideal Theory. Pure and Applied Mathematics 12. Marcel Dekker, New York (1972). | MR | JFM

[7] Halter-Koch, F.: Ideal Systems: An Introduction to Multiplicative Ideal Theory. Pure and Applied Mathematics, Marcel Dekker 211. Marcel Dekker, New York (1998). | DOI | MR | JFM

[8] Jung, C. Y., Khalid, W., Nazeer, W., Tariq, T., Kang, S. M.: On an extension of sharp domains. Int. J. Pure Appl. Math. 115 (2017), 353-360. | DOI

[9] Larsen, M. D., McCarthy, P. J.: Multiplicative Theory of Ideals. Pure and Applied Mathematics 43. Academic Press, New York (1971). | MR | JFM

[10] Olberding, B.: Globalizing local properties of Prüfer domains. J. Algebra 205 (1998), 480-504. | DOI | MR | JFM

[11] Olberding, B., Reinhart, A.: Radical factorization in commutative rings, monoids and multiplicative lattices. Algebra Univers. 80 (2019), Article ID 24, 29 pages. | DOI | MR | JFM

Cité par Sources :