A class of multiplicative lattices
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 591-601.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the multiplicative lattices $L$ which satisfy the condition $ a=(a :\nobreak (a: \nobreak b))(a:b) $ for all $a,b\in L$. Call them sharp lattices. We prove that every totally ordered sharp lattice is isomorphic to the ideal lattice of a valuation domain with value group $\mathbb {Z}$ or $\mathbb {R}$. A sharp lattice $L$ localized at its maximal elements are totally ordered sharp lattices. The converse is true if $L$ has finite character.
DOI : 10.21136/CMJ.2021.0034-20
Classification : 06F99, 13A15, 13F05
Keywords: multiplicative lattice; Prüfer lattice; Prüfer integral domain
@article{10_21136_CMJ_2021_0034_20,
     author = {Dumitrescu, Tiberiu and Epure, Mihai},
     title = {A class of multiplicative lattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {591--601},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2021},
     doi = {10.21136/CMJ.2021.0034-20},
     mrnumber = {4263188},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0034-20/}
}
TY  - JOUR
AU  - Dumitrescu, Tiberiu
AU  - Epure, Mihai
TI  - A class of multiplicative lattices
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 591
EP  - 601
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0034-20/
DO  - 10.21136/CMJ.2021.0034-20
LA  - en
ID  - 10_21136_CMJ_2021_0034_20
ER  - 
%0 Journal Article
%A Dumitrescu, Tiberiu
%A Epure, Mihai
%T A class of multiplicative lattices
%J Czechoslovak Mathematical Journal
%D 2021
%P 591-601
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0034-20/
%R 10.21136/CMJ.2021.0034-20
%G en
%F 10_21136_CMJ_2021_0034_20
Dumitrescu, Tiberiu; Epure, Mihai. A class of multiplicative lattices. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 591-601. doi : 10.21136/CMJ.2021.0034-20. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2021.0034-20/

Cité par Sources :