New estimates for the first eigenvalue of the Jacobi operator on closed hypersurfaces in Riemannian space forms
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 881-890
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study the first eigenvalue of the Jacobi operator on closed hypersurfaces with constant mean curvature in non-flat Riemannian space forms. Under an appropriate constraint on the totally umbilical tensor of the hypersurfaces and following Meléndez's ideas in J. Meléndez (2014) we obtain a new sharp upper bound of the first eigenvalue of the Jacobi operator.
We study the first eigenvalue of the Jacobi operator on closed hypersurfaces with constant mean curvature in non-flat Riemannian space forms. Under an appropriate constraint on the totally umbilical tensor of the hypersurfaces and following Meléndez's ideas in J. Meléndez (2014) we obtain a new sharp upper bound of the first eigenvalue of the Jacobi operator.
DOI : 10.21136/CMJ.2020.0579-18
Classification : 53C50
Keywords: Jacobi operator; first eigenvalue; closed hypersurface
@article{10_21136_CMJ_2020_0579_18,
     author = {Liu, Jiancheng and Mi, Rong},
     title = {New estimates for the first eigenvalue of the {Jacobi} operator on closed hypersurfaces in {Riemannian} space forms},
     journal = {Czechoslovak Mathematical Journal},
     pages = {881--890},
     year = {2020},
     volume = {70},
     number = {3},
     doi = {10.21136/CMJ.2020.0579-18},
     mrnumber = {4151711},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0579-18/}
}
TY  - JOUR
AU  - Liu, Jiancheng
AU  - Mi, Rong
TI  - New estimates for the first eigenvalue of the Jacobi operator on closed hypersurfaces in Riemannian space forms
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 881
EP  - 890
VL  - 70
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0579-18/
DO  - 10.21136/CMJ.2020.0579-18
LA  - en
ID  - 10_21136_CMJ_2020_0579_18
ER  - 
%0 Journal Article
%A Liu, Jiancheng
%A Mi, Rong
%T New estimates for the first eigenvalue of the Jacobi operator on closed hypersurfaces in Riemannian space forms
%J Czechoslovak Mathematical Journal
%D 2020
%P 881-890
%V 70
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0579-18/
%R 10.21136/CMJ.2020.0579-18
%G en
%F 10_21136_CMJ_2020_0579_18
Liu, Jiancheng; Mi, Rong. New estimates for the first eigenvalue of the Jacobi operator on closed hypersurfaces in Riemannian space forms. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 881-890. doi: 10.21136/CMJ.2020.0579-18

[1] Alencar, H., Carmo, M. do: Hypersurfaces with constant mean curvature in spheres. Proc. Am. Math. Soc. 120 (1994), 1223-1229. | DOI | MR | JFM

[2] Alías, L. J.: On the stability index of minimal and constant mean curvature hypersurfaces in spheres. Rev. Unión Mat. Argent. 47 (2006-2007), 39-61. | MR | JFM

[3] L. J. Alías, A. Barros, A. Brasil, Jr.: A spectral characterization of the $H(r)$-torus by the first stability eigenvalue. Proc. Am. Math. Soc. 133 (2005), 875-884. | DOI | MR | JFM

[4] Alías, L. J., García-Martínez, S. C.: An estimate for the scalar curvature of constant mean curvature hypersurfaces in space forms. Geom. Dedicata 156 (2012), 31-47. | DOI | MR | JFM

[5] Alías, L. J., Meléndez, J., Palmas, O.: Hypersurfaces with constant scalar curvature in space forms. Differ. Geom. Appl. 58 (2018), 65-82. | DOI | MR | JFM

[6] Aquino, C. P., Lima, H. F. de, Santos, F. R. dos, Velásquez, M. A. L.: On the first stability eigenvalue of hypersurfaces in Euclidean and hyperbolic spaces. Quaest. Math. 40 (2017), 605-616. | DOI | MR | JFM

[7] Barbosa, J. L., Carmo, M. do, Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197 (1988), 123-138. | DOI | MR | JFM

[8] Chavel, I.: Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics 115. Academic Press, Orlando (1984). | DOI | MR | JFM

[9] Chen, D., Cheng, Q.-M.: Estimates for the first eigenvalue of Jacobi operator on hypersurfaces with constant mean curvature in spheres. Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 50, 12 pages. | DOI | MR | JFM

[10] Cheng, Q.-M.: The rigidity of Clifford torus $S^{1}\bigl({\scriptstyle \sqrt{\frac{1}{n}}}\bigr)\times S^{n-1} \bigl({\scriptstyle \sqrt{\frac{n-1}{n}}}\big)$. Comment. Math. Helv. 71 (1996), 60-69. | DOI | MR | JFM

[11] Cheng, Q.-M.: Hypersurfaces in a unit sphere $S^{n+1}(1)$ with constant scalar curvature. J. Lond. Math. Soc., II. Ser. 64 (2001), 755-768. | DOI | MR | JFM

[12] Cheng, Q.-M., Nakagawa, H.: Totally umbilic hypersurfaces. Hiroshima Math. J. 20 (1990), 1-10. | DOI | MR | JFM

[13] Cheng, S.-Y.: Eigenvalue comparison theorems and its geometric applications. Math. Z. 143 (1975), 289-297. | DOI | MR | JFM

[14] Chern, S. S., Carmo, M. do, Kobayashi, S.: Minimal submanifolds of a sphere with second fundamental form of constant length. Functional Analysis and Related Fields Springer, New York (1970), 59-75. | DOI | MR | JFM

[15] A. A. de Barros, A. C. Brasil, Jr., L. A. M. de Sousa, Jr.: A new characterization of submanifolds with parallel mean curvature vector in $S^{n+p}$. Kodai Math. J. 27 (2004), 45-56. | DOI | MR | JFM

[16] Lima, E. L. de, Lima, H. F. de: A new optimal estimate for the first stability eigenvalue of closed hypersurfaces in Riemannian space forms. Rend. Circ. Mat. Palermo (2) 67 (2018), 533-537. | DOI | MR | JFM

[17] Soufi, A. El, II., E. M. Harrell, Ilias, S.: Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds. Trans. Am. Math. Soc. 361 (2009), 2337-2350. | DOI | MR | JFM

[18] H. B. Lawson, Jr.: Local rigidity theorems for minimal hypersurfaces. Ann. Math. 89 (1969), 187-197. | DOI | MR | JFM

[19] Meléndez, J.: Rigidity theorems for hypersurfaces with constant mean curvature. Bull. Braz. Math. Soc. (N.S.) 45 (2014), 385-404. | DOI | MR | JFM

[20] Okumura, M.: Hypersurfaces and a pinching problem on the second fundamental tensor. Am. J. Math. 96 (1974), 207-213. | DOI | MR | JFM

[21] Perdomo, O.: First stability eigenvalue characterization of Clifford hypersurfaces. Proc. Am. Math. Soc. 130 (2002), 3379-3384. | DOI | MR | JFM

[22] Simons, J.: Minimal varieties in Riemannian manifolds. Ann. Math. (2) 88 (1968), 62-105. | DOI | MR | JFM

[23] Wu, C.: New characterizations of the Clifford tori and the Veronese surface. Arch. Math. 61 (1993), 277-284. | DOI | MR | JFM

Cité par Sources :