Keywords: Jacobi operator; first eigenvalue; closed hypersurface
@article{10_21136_CMJ_2020_0579_18,
author = {Liu, Jiancheng and Mi, Rong},
title = {New estimates for the first eigenvalue of the {Jacobi} operator on closed hypersurfaces in {Riemannian} space forms},
journal = {Czechoslovak Mathematical Journal},
pages = {881--890},
year = {2020},
volume = {70},
number = {3},
doi = {10.21136/CMJ.2020.0579-18},
mrnumber = {4151711},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0579-18/}
}
TY - JOUR AU - Liu, Jiancheng AU - Mi, Rong TI - New estimates for the first eigenvalue of the Jacobi operator on closed hypersurfaces in Riemannian space forms JO - Czechoslovak Mathematical Journal PY - 2020 SP - 881 EP - 890 VL - 70 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0579-18/ DO - 10.21136/CMJ.2020.0579-18 LA - en ID - 10_21136_CMJ_2020_0579_18 ER -
%0 Journal Article %A Liu, Jiancheng %A Mi, Rong %T New estimates for the first eigenvalue of the Jacobi operator on closed hypersurfaces in Riemannian space forms %J Czechoslovak Mathematical Journal %D 2020 %P 881-890 %V 70 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0579-18/ %R 10.21136/CMJ.2020.0579-18 %G en %F 10_21136_CMJ_2020_0579_18
Liu, Jiancheng; Mi, Rong. New estimates for the first eigenvalue of the Jacobi operator on closed hypersurfaces in Riemannian space forms. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 881-890. doi: 10.21136/CMJ.2020.0579-18
[1] Alencar, H., Carmo, M. do: Hypersurfaces with constant mean curvature in spheres. Proc. Am. Math. Soc. 120 (1994), 1223-1229. | DOI | MR | JFM
[2] Alías, L. J.: On the stability index of minimal and constant mean curvature hypersurfaces in spheres. Rev. Unión Mat. Argent. 47 (2006-2007), 39-61. | MR | JFM
[3] L. J. Alías, A. Barros, A. Brasil, Jr.: A spectral characterization of the $H(r)$-torus by the first stability eigenvalue. Proc. Am. Math. Soc. 133 (2005), 875-884. | DOI | MR | JFM
[4] Alías, L. J., García-Martínez, S. C.: An estimate for the scalar curvature of constant mean curvature hypersurfaces in space forms. Geom. Dedicata 156 (2012), 31-47. | DOI | MR | JFM
[5] Alías, L. J., Meléndez, J., Palmas, O.: Hypersurfaces with constant scalar curvature in space forms. Differ. Geom. Appl. 58 (2018), 65-82. | DOI | MR | JFM
[6] Aquino, C. P., Lima, H. F. de, Santos, F. R. dos, Velásquez, M. A. L.: On the first stability eigenvalue of hypersurfaces in Euclidean and hyperbolic spaces. Quaest. Math. 40 (2017), 605-616. | DOI | MR | JFM
[7] Barbosa, J. L., Carmo, M. do, Eschenburg, J.: Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. Math. Z. 197 (1988), 123-138. | DOI | MR | JFM
[8] Chavel, I.: Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics 115. Academic Press, Orlando (1984). | DOI | MR | JFM
[9] Chen, D., Cheng, Q.-M.: Estimates for the first eigenvalue of Jacobi operator on hypersurfaces with constant mean curvature in spheres. Calc. Var. Partial Differ. Equ. 56 (2017), Article ID 50, 12 pages. | DOI | MR | JFM
[10] Cheng, Q.-M.: The rigidity of Clifford torus $S^{1}\bigl({\scriptstyle \sqrt{\frac{1}{n}}}\bigr)\times S^{n-1} \bigl({\scriptstyle \sqrt{\frac{n-1}{n}}}\big)$. Comment. Math. Helv. 71 (1996), 60-69. | DOI | MR | JFM
[11] Cheng, Q.-M.: Hypersurfaces in a unit sphere $S^{n+1}(1)$ with constant scalar curvature. J. Lond. Math. Soc., II. Ser. 64 (2001), 755-768. | DOI | MR | JFM
[12] Cheng, Q.-M., Nakagawa, H.: Totally umbilic hypersurfaces. Hiroshima Math. J. 20 (1990), 1-10. | DOI | MR | JFM
[13] Cheng, S.-Y.: Eigenvalue comparison theorems and its geometric applications. Math. Z. 143 (1975), 289-297. | DOI | MR | JFM
[14] Chern, S. S., Carmo, M. do, Kobayashi, S.: Minimal submanifolds of a sphere with second fundamental form of constant length. Functional Analysis and Related Fields Springer, New York (1970), 59-75. | DOI | MR | JFM
[15] A. A. de Barros, A. C. Brasil, Jr., L. A. M. de Sousa, Jr.: A new characterization of submanifolds with parallel mean curvature vector in $S^{n+p}$. Kodai Math. J. 27 (2004), 45-56. | DOI | MR | JFM
[16] Lima, E. L. de, Lima, H. F. de: A new optimal estimate for the first stability eigenvalue of closed hypersurfaces in Riemannian space forms. Rend. Circ. Mat. Palermo (2) 67 (2018), 533-537. | DOI | MR | JFM
[17] Soufi, A. El, II., E. M. Harrell, Ilias, S.: Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds. Trans. Am. Math. Soc. 361 (2009), 2337-2350. | DOI | MR | JFM
[18] H. B. Lawson, Jr.: Local rigidity theorems for minimal hypersurfaces. Ann. Math. 89 (1969), 187-197. | DOI | MR | JFM
[19] Meléndez, J.: Rigidity theorems for hypersurfaces with constant mean curvature. Bull. Braz. Math. Soc. (N.S.) 45 (2014), 385-404. | DOI | MR | JFM
[20] Okumura, M.: Hypersurfaces and a pinching problem on the second fundamental tensor. Am. J. Math. 96 (1974), 207-213. | DOI | MR | JFM
[21] Perdomo, O.: First stability eigenvalue characterization of Clifford hypersurfaces. Proc. Am. Math. Soc. 130 (2002), 3379-3384. | DOI | MR | JFM
[22] Simons, J.: Minimal varieties in Riemannian manifolds. Ann. Math. (2) 88 (1968), 62-105. | DOI | MR | JFM
[23] Wu, C.: New characterizations of the Clifford tori and the Veronese surface. Arch. Math. 61 (1993), 277-284. | DOI | MR | JFM
Cité par Sources :