Solutions to conjectures on a nonlinear recursive equation
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 867-880
We obtain solutions to some conjectures about the nonlinear difference equation $$ x_{n+1}=\alpha +\beta x_{n-1} {\rm e}^{-x_{n}}, \quad n=0,1,\cdots , \^^M\alpha ,\beta >0. $$ More precisely, we get not only a condition under which the equilibrium point of the above equation is globally asymptotically stable but also a condition under which the above equation has a unique positive cycle of prime period two. We also prove some further results.
We obtain solutions to some conjectures about the nonlinear difference equation $$ x_{n+1}=\alpha +\beta x_{n-1} {\rm e}^{-x_{n}}, \quad n=0,1,\cdots , \^^M\alpha ,\beta >0. $$ More precisely, we get not only a condition under which the equilibrium point of the above equation is globally asymptotically stable but also a condition under which the above equation has a unique positive cycle of prime period two. We also prove some further results.
DOI :
10.21136/CMJ.2020.0572-18
Classification :
11B39, 39A10, 39A21
Keywords: recursive equation; nonlinear difference equation; equilibrium point; stability
Keywords: recursive equation; nonlinear difference equation; equilibrium point; stability
@article{10_21136_CMJ_2020_0572_18,
author = {\"Ocalan, \"Ozkan and Duman, Oktay},
title = {Solutions to conjectures on a nonlinear recursive equation},
journal = {Czechoslovak Mathematical Journal},
pages = {867--880},
year = {2020},
volume = {70},
number = {3},
doi = {10.21136/CMJ.2020.0572-18},
mrnumber = {4151710},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0572-18/}
}
TY - JOUR AU - Öcalan, Özkan AU - Duman, Oktay TI - Solutions to conjectures on a nonlinear recursive equation JO - Czechoslovak Mathematical Journal PY - 2020 SP - 867 EP - 880 VL - 70 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0572-18/ DO - 10.21136/CMJ.2020.0572-18 LA - en ID - 10_21136_CMJ_2020_0572_18 ER -
%0 Journal Article %A Öcalan, Özkan %A Duman, Oktay %T Solutions to conjectures on a nonlinear recursive equation %J Czechoslovak Mathematical Journal %D 2020 %P 867-880 %V 70 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0572-18/ %R 10.21136/CMJ.2020.0572-18 %G en %F 10_21136_CMJ_2020_0572_18
Öcalan, Özkan; Duman, Oktay. Solutions to conjectures on a nonlinear recursive equation. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 867-880. doi: 10.21136/CMJ.2020.0572-18
[1] El-Metwally, H., Grove, E. A., Ladas, G., Levins, R., Radin, M.: On the difference equation $x_{n+1}=\alpha +\beta x_{n-1} e^{-x_{n}}$. Nonlinear Anal., Theory Methods Appl. 47 (2001), 4623-4634. | DOI | MR | JFM
[2] Fotiades, N., Papaschinopoulos, G.: Existence, uniqueness and attractivity of prime period two solution for a difference equation of exponential form. Appl. Math. Comput. 218 (2012), 11648-11653. | DOI | MR | JFM
Cité par Sources :