Keywords: complex symmetry; weighted composition operator; Hardy space
@article{10_21136_CMJ_2020_0555_18,
author = {Jiang, Cao and Han, Shi-An and Zhou, Ze-Hua},
title = {Complex symmetric weighted composition operators on the {Hardy} space},
journal = {Czechoslovak Mathematical Journal},
pages = {817--831},
year = {2020},
volume = {70},
number = {3},
doi = {10.21136/CMJ.2020.0555-18},
mrnumber = {4151708},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0555-18/}
}
TY - JOUR AU - Jiang, Cao AU - Han, Shi-An AU - Zhou, Ze-Hua TI - Complex symmetric weighted composition operators on the Hardy space JO - Czechoslovak Mathematical Journal PY - 2020 SP - 817 EP - 831 VL - 70 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0555-18/ DO - 10.21136/CMJ.2020.0555-18 LA - en ID - 10_21136_CMJ_2020_0555_18 ER -
%0 Journal Article %A Jiang, Cao %A Han, Shi-An %A Zhou, Ze-Hua %T Complex symmetric weighted composition operators on the Hardy space %J Czechoslovak Mathematical Journal %D 2020 %P 817-831 %V 70 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0555-18/ %R 10.21136/CMJ.2020.0555-18 %G en %F 10_21136_CMJ_2020_0555_18
Jiang, Cao; Han, Shi-An; Zhou, Ze-Hua. Complex symmetric weighted composition operators on the Hardy space. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 817-831. doi: 10.21136/CMJ.2020.0555-18
[1] Bourdon, P. S., Narayan, S. K.: Normal weighted composition operators on the Hardy space $H^2(\mathbb{U})$. J. Math. Anal. Appl. 367 (2010), 278-286. | DOI | MR | JFM
[2] Bourdon, P. S., Noor, S. Waleed: Complex symmetry of invertible composition operators. J. Math. Anal. Appl. 429 (2015), 105-110. | DOI | MR | JFM
[3] Cowen, C. C., Ko, E.: Hermitian weighted composition operators on $H^2$. Trans. Am. Math. Soc. 362 (2010), 5771-5801. | DOI | MR | JFM
[4] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics, CRC Press, Boca Raton (1995). | DOI | MR | JFM
[5] Gao, Y. X., Zhou, Z. H.: Complex symmetric composition operators induced by linear fractional maps. Indiana Univ. Math. J. 69 (2020), 367-384. | DOI | MR
[6] Garcia, S. R., Hammond, C.: Which weighted composition operators are complex symmetric?. Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation Operator Theory: Advances and Applications 236, Birkhäuser/Springer, Basel (2014), 171-179. | DOI | MR | JFM
[7] Garcia, S. R., Putinar, M.: Complex symmetric operators and applications. Trans. Am. Math. Soc. 358 (2006), 1285-1315. | DOI | MR | JFM
[8] Garcia, S. R., Putinar, M.: Complex symmetric operators and applications II. Trans. Am. Math. Soc. 359 (2007), 3913-3931. | DOI | MR | JFM
[9] Garcia, S. R., Wogen, W. R.: Complex symmetric partial isometries. J. Funct. Anal. 257 (2009), 1251-1260. | DOI | MR | JFM
[10] Garcia, S. R., Wogen, W. R.: Some new classes of complex symmetric operators. Trans. Am. Math. Soc. 362 (2010), 6065-6077. | DOI | MR | JFM
[11] Jung, S., Kim, Y., Ko, E., Lee, J.: Complex symmetric weighted composition operators on $H^2(\mathbb{D})$. J. Funct. Anal. 267 (2014), 323-351. | DOI | MR | JFM
[12] Matache, V.: Problems on weighted and unweighted composition operators. Complex Analysis and Dynamical Systems Trends in Mathematics, Birkhäuser, Cham (2018), 191-217. | DOI | MR | JFM
[13] Narayan, S. K., Sievewright, D., Thompson, D.: Complex symmetric composition operators on $H^2$. J. Math. Anal. Appl. 443 (2016), 625-630. | DOI | MR | JFM
[14] Shapiro, J. H.: Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics, Springer, New York (1993). | DOI | MR | JFM
[15] Noor, S. Waleed: Complex symmetry of composition operators induced by involutive ball automorphisms. Proc. Am. Math. Soc. 142 (2014), 3103-3107. | DOI | MR | JFM
[16] Noor, S. Waleed: On an example of a complex symmetric composition operator on $H^2(\mathbb{D})$. J. Funct. Anal. 269 (2015), 1899-1901. | DOI | MR | JFM
Cité par Sources :