Complex symmetric weighted composition operators on the Hardy space
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 817-831
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper identifies a class of complex symmetric weighted composition operators on $H^2(\mathbb {D})$ that includes both the unitary and the Hermitian weighted composition operators, as well as a class of normal weighted composition operators identified by Bourdon and Narayan. A characterization of algebraic weighted composition operators with degree no more than two is provided to illustrate that the weight function of a complex symmetric weighted composition operator is not necessarily linear fractional.
This paper identifies a class of complex symmetric weighted composition operators on $H^2(\mathbb {D})$ that includes both the unitary and the Hermitian weighted composition operators, as well as a class of normal weighted composition operators identified by Bourdon and Narayan. A characterization of algebraic weighted composition operators with degree no more than two is provided to illustrate that the weight function of a complex symmetric weighted composition operator is not necessarily linear fractional.
DOI : 10.21136/CMJ.2020.0555-18
Classification : 47B33, 47B38
Keywords: complex symmetry; weighted composition operator; Hardy space
@article{10_21136_CMJ_2020_0555_18,
     author = {Jiang, Cao and Han, Shi-An and Zhou, Ze-Hua},
     title = {Complex symmetric weighted composition operators on the {Hardy} space},
     journal = {Czechoslovak Mathematical Journal},
     pages = {817--831},
     year = {2020},
     volume = {70},
     number = {3},
     doi = {10.21136/CMJ.2020.0555-18},
     mrnumber = {4151708},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0555-18/}
}
TY  - JOUR
AU  - Jiang, Cao
AU  - Han, Shi-An
AU  - Zhou, Ze-Hua
TI  - Complex symmetric weighted composition operators on the Hardy space
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 817
EP  - 831
VL  - 70
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0555-18/
DO  - 10.21136/CMJ.2020.0555-18
LA  - en
ID  - 10_21136_CMJ_2020_0555_18
ER  - 
%0 Journal Article
%A Jiang, Cao
%A Han, Shi-An
%A Zhou, Ze-Hua
%T Complex symmetric weighted composition operators on the Hardy space
%J Czechoslovak Mathematical Journal
%D 2020
%P 817-831
%V 70
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0555-18/
%R 10.21136/CMJ.2020.0555-18
%G en
%F 10_21136_CMJ_2020_0555_18
Jiang, Cao; Han, Shi-An; Zhou, Ze-Hua. Complex symmetric weighted composition operators on the Hardy space. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 817-831. doi: 10.21136/CMJ.2020.0555-18

[1] Bourdon, P. S., Narayan, S. K.: Normal weighted composition operators on the Hardy space $H^2(\mathbb{U})$. J. Math. Anal. Appl. 367 (2010), 278-286. | DOI | MR | JFM

[2] Bourdon, P. S., Noor, S. Waleed: Complex symmetry of invertible composition operators. J. Math. Anal. Appl. 429 (2015), 105-110. | DOI | MR | JFM

[3] Cowen, C. C., Ko, E.: Hermitian weighted composition operators on $H^2$. Trans. Am. Math. Soc. 362 (2010), 5771-5801. | DOI | MR | JFM

[4] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics, CRC Press, Boca Raton (1995). | DOI | MR | JFM

[5] Gao, Y. X., Zhou, Z. H.: Complex symmetric composition operators induced by linear fractional maps. Indiana Univ. Math. J. 69 (2020), 367-384. | DOI | MR

[6] Garcia, S. R., Hammond, C.: Which weighted composition operators are complex symmetric?. Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation Operator Theory: Advances and Applications 236, Birkhäuser/Springer, Basel (2014), 171-179. | DOI | MR | JFM

[7] Garcia, S. R., Putinar, M.: Complex symmetric operators and applications. Trans. Am. Math. Soc. 358 (2006), 1285-1315. | DOI | MR | JFM

[8] Garcia, S. R., Putinar, M.: Complex symmetric operators and applications II. Trans. Am. Math. Soc. 359 (2007), 3913-3931. | DOI | MR | JFM

[9] Garcia, S. R., Wogen, W. R.: Complex symmetric partial isometries. J. Funct. Anal. 257 (2009), 1251-1260. | DOI | MR | JFM

[10] Garcia, S. R., Wogen, W. R.: Some new classes of complex symmetric operators. Trans. Am. Math. Soc. 362 (2010), 6065-6077. | DOI | MR | JFM

[11] Jung, S., Kim, Y., Ko, E., Lee, J.: Complex symmetric weighted composition operators on $H^2(\mathbb{D})$. J. Funct. Anal. 267 (2014), 323-351. | DOI | MR | JFM

[12] Matache, V.: Problems on weighted and unweighted composition operators. Complex Analysis and Dynamical Systems Trends in Mathematics, Birkhäuser, Cham (2018), 191-217. | DOI | MR | JFM

[13] Narayan, S. K., Sievewright, D., Thompson, D.: Complex symmetric composition operators on $H^2$. J. Math. Anal. Appl. 443 (2016), 625-630. | DOI | MR | JFM

[14] Shapiro, J. H.: Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics, Springer, New York (1993). | DOI | MR | JFM

[15] Noor, S. Waleed: Complex symmetry of composition operators induced by involutive ball automorphisms. Proc. Am. Math. Soc. 142 (2014), 3103-3107. | DOI | MR | JFM

[16] Noor, S. Waleed: On an example of a complex symmetric composition operator on $H^2(\mathbb{D})$. J. Funct. Anal. 269 (2015), 1899-1901. | DOI | MR | JFM

Cité par Sources :