The $p$-nilpotency of finite groups with some weakly pronormal subgroups
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 805-816.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a finite group $G$ and a fixed Sylow $p$-subgroup $P$ of $G$, Ballester-Bolinches and Guo proved in 2000 that $G$ is $p$-nilpotent if every element of $P\cap G'$ with order $p$ lies in the center of $N_G(P)$ and when $p=2$, either every element of $P\cap G'$ with order $4$ lies in the center of $N_G(P)$ or $P$ is quaternion-free and $N_G(P)$ is $2$-nilpotent. Asaad introduced weakly pronormal subgroup of $G$ in 2014 and proved that $G$ is $p$-nilpotent if every element of $P$ with order $p$ is weakly pronormal in $G$ and when $p=2$, every element of $P$ with order $4$ is also weakly pronormal in $G$. These results generalized famous Itô's Lemma. We are motivated to generalize Ballester-Bolinches and Guo's Theorem and Asaad's Theorem. It is proved that if $p$ is the smallest prime dividing the order of a group $G$ and $P$, a Sylow $p$-subgroup of $G$, then $G$ is $p$-nilpotent if $G$ is $S_4$-free and every subgroup of order $p$ in $P\cap P^x\cap G^{\mathfrak {N_p}}$ is weakly pronormal in $N_G(P)$ for all $x\in G\setminus N_G(P)$, and when $p=2$, $P$ is quaternion-free, where $G^{\mathfrak {N_p}}$ is the $p$-nilpotent residual of $G$.
DOI : 10.21136/CMJ.2020.0546-18
Classification : 20D10, 20D20
Keywords: weakly pronormal subgroup; normalizer; minimal subgroup; formation; $p$-nilpotency
@article{10_21136_CMJ_2020_0546_18,
     author = {Liu, Jianjun and Chang, Jian and Chen, Guiyun},
     title = {The $p$-nilpotency of finite groups with some weakly pronormal subgroups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {805--816},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2020},
     doi = {10.21136/CMJ.2020.0546-18},
     mrnumber = {4151707},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0546-18/}
}
TY  - JOUR
AU  - Liu, Jianjun
AU  - Chang, Jian
AU  - Chen, Guiyun
TI  - The $p$-nilpotency of finite groups with some weakly pronormal subgroups
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 805
EP  - 816
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0546-18/
DO  - 10.21136/CMJ.2020.0546-18
LA  - en
ID  - 10_21136_CMJ_2020_0546_18
ER  - 
%0 Journal Article
%A Liu, Jianjun
%A Chang, Jian
%A Chen, Guiyun
%T The $p$-nilpotency of finite groups with some weakly pronormal subgroups
%J Czechoslovak Mathematical Journal
%D 2020
%P 805-816
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0546-18/
%R 10.21136/CMJ.2020.0546-18
%G en
%F 10_21136_CMJ_2020_0546_18
Liu, Jianjun; Chang, Jian; Chen, Guiyun. The $p$-nilpotency of finite groups with some weakly pronormal subgroups. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 805-816. doi : 10.21136/CMJ.2020.0546-18. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0546-18/

Cité par Sources :