The $p$-nilpotency of finite groups with some weakly pronormal subgroups
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 805-816
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a finite group $G$ and a fixed Sylow $p$-subgroup $P$ of $G$, Ballester-Bolinches and Guo proved in 2000 that $G$ is $p$-nilpotent if every element of $P\cap G'$ with order $p$ lies in the center of $N_G(P)$ and when $p=2$, either every element of $P\cap G'$ with order $4$ lies in the center of $N_G(P)$ or $P$ is quaternion-free and $N_G(P)$ is $2$-nilpotent. Asaad introduced weakly pronormal subgroup of $G$ in 2014 and proved that $G$ is $p$-nilpotent if every element of $P$ with order $p$ is weakly pronormal in $G$ and when $p=2$, every element of $P$ with order $4$ is also weakly pronormal in $G$. These results generalized famous Itô's Lemma. We are motivated to generalize Ballester-Bolinches and Guo's Theorem and Asaad's Theorem. It is proved that if $p$ is the smallest prime dividing the order of a group $G$ and $P$, a Sylow $p$-subgroup of $G$, then $G$ is $p$-nilpotent if $G$ is $S_4$-free and every subgroup of order $p$ in $P\cap P^x\cap G^{\mathfrak {N_p}}$ is weakly pronormal in $N_G(P)$ for all $x\in G\setminus N_G(P)$, and when $p=2$, $P$ is quaternion-free, where $G^{\mathfrak {N_p}}$ is the $p$-nilpotent residual of $G$.
For a finite group $G$ and a fixed Sylow $p$-subgroup $P$ of $G$, Ballester-Bolinches and Guo proved in 2000 that $G$ is $p$-nilpotent if every element of $P\cap G'$ with order $p$ lies in the center of $N_G(P)$ and when $p=2$, either every element of $P\cap G'$ with order $4$ lies in the center of $N_G(P)$ or $P$ is quaternion-free and $N_G(P)$ is $2$-nilpotent. Asaad introduced weakly pronormal subgroup of $G$ in 2014 and proved that $G$ is $p$-nilpotent if every element of $P$ with order $p$ is weakly pronormal in $G$ and when $p=2$, every element of $P$ with order $4$ is also weakly pronormal in $G$. These results generalized famous Itô's Lemma. We are motivated to generalize Ballester-Bolinches and Guo's Theorem and Asaad's Theorem. It is proved that if $p$ is the smallest prime dividing the order of a group $G$ and $P$, a Sylow $p$-subgroup of $G$, then $G$ is $p$-nilpotent if $G$ is $S_4$-free and every subgroup of order $p$ in $P\cap P^x\cap G^{\mathfrak {N_p}}$ is weakly pronormal in $N_G(P)$ for all $x\in G\setminus N_G(P)$, and when $p=2$, $P$ is quaternion-free, where $G^{\mathfrak {N_p}}$ is the $p$-nilpotent residual of $G$.
DOI : 10.21136/CMJ.2020.0546-18
Classification : 20D10, 20D20
Keywords: weakly pronormal subgroup; normalizer; minimal subgroup; formation; $p$-nilpotency
@article{10_21136_CMJ_2020_0546_18,
     author = {Liu, Jianjun and Chang, Jian and Chen, Guiyun},
     title = {The $p$-nilpotency of finite groups with some weakly pronormal subgroups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {805--816},
     year = {2020},
     volume = {70},
     number = {3},
     doi = {10.21136/CMJ.2020.0546-18},
     mrnumber = {4151707},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0546-18/}
}
TY  - JOUR
AU  - Liu, Jianjun
AU  - Chang, Jian
AU  - Chen, Guiyun
TI  - The $p$-nilpotency of finite groups with some weakly pronormal subgroups
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 805
EP  - 816
VL  - 70
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0546-18/
DO  - 10.21136/CMJ.2020.0546-18
LA  - en
ID  - 10_21136_CMJ_2020_0546_18
ER  - 
%0 Journal Article
%A Liu, Jianjun
%A Chang, Jian
%A Chen, Guiyun
%T The $p$-nilpotency of finite groups with some weakly pronormal subgroups
%J Czechoslovak Mathematical Journal
%D 2020
%P 805-816
%V 70
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0546-18/
%R 10.21136/CMJ.2020.0546-18
%G en
%F 10_21136_CMJ_2020_0546_18
Liu, Jianjun; Chang, Jian; Chen, Guiyun. The $p$-nilpotency of finite groups with some weakly pronormal subgroups. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 805-816. doi: 10.21136/CMJ.2020.0546-18

[1] Asaad, M.: On weakly pronormal subgroups of finite groups. J. Group Theory 17 (2014), 407-418. | DOI | MR | JFM

[2] Asaad, M., Ballester-Bolinches, A., Aguilera, M. C. Pedraza: A note on minimal subgroups of finite groups. Commun. Algebra 24 (1996), 2771-2776. | DOI | MR | JFM

[3] Asaad, M., Ramadan, M.: On the intersection of maximal subgroups of a finite group. Arch. Math. 61 (1993), 206-214. | DOI | MR | JFM

[4] Ballester-Bolinches, A.: $\mathfrak H$-normalizers and local definitions of saturated formations of finite groups. Isr. J. Math. 67 (1989), 312-326. | DOI | MR | JFM

[5] Ballester-Bolinches, A., Beidleman, J. C., Feldman, A. D., Ragland, M. F.: On generalised pronormal subgroups of finite groups. Glasg. Math. J. 56 (2014), 691-703. | DOI | MR | JFM

[6] Ballester-Bolinches, A., Beidleman, J. C., Feldman, A. D., Ragland, M. F.: Finite groups in which pronormality and $\mathfrak F$-pronormality coincide. J. Group Theory 19 (2016), 323-329. | DOI | MR | JFM

[7] Ballester-Bolinches, A., Guo, X.: Some results on $p$-nilpotence and solubility of finite groups. J. Algebra 228 (2000), 491-496. | DOI | MR | JFM

[8] Ballester-Bolinches, A., Guo, X., Li, Y., Su, N.: On finite $p$-nilpotent groups. Monatsh. Math. 181 (2016), 63-70. | DOI | MR | JFM

[9] Brewster, B., Martínez-Pastor, A., Pérez-Ramos, M. D.: Pronormal subgroups of a direct product of groups. J. Algebra 321 (2009), 1734-1745. | DOI | MR | JFM

[10] Doerk, K., Hawkes, T.: Finite Soluble Groups. De Gruyter Expositions in Mathematics 4, Walter de Gruyter, Berlin (1992). | DOI | MR | JFM

[11] Dornhoff, L.: $M$-groups and $2$-groups. Math. Z. 100 (1967), 226-256. | DOI | MR | JFM

[12] Gorenstein, D.: Finite Groups. Harper's Series in Modern Mathematics, Harper {&} Row Publishers, New York (1968). | MR | JFM

[13] Guo, X. Y., Shum, K. P.: The influence of minimal subgroups of focal subgroups on the structure of finite groups. J. Pure Appl. Algebra 169 (2002), 43-50. | DOI | MR | JFM

[14] Guo, X., Shum, K. P.: On $p$-nilpotency and minimal subgroups of finte groups. Sci. China, Ser. A 46 (2003), 176-186. | DOI | MR | JFM

[15] Guo, X., Shum, K. P.: Permutability of minimal subgroups and $p$-nilpotentcy of finite groups. Isr. J. Math. 136 (2003), 145-155. | DOI | MR | JFM

[16] Guo, X., Shum, K. P.: $p$-nilpotence of finite groups and minimal subgroups. J. Algebra 270 (2003), 459-470. | DOI | MR | JFM

[17] Itô, N.: Über eine zur Frattini-Gruppe duale Bildung. Nagoya Math. J. 9 (1955), 123-127 German. | DOI | MR | JFM

[18] Li, Y., Su, N., Wang, Y.: A generalization of Burnside's $p$-nilpotency criterion. J. Group Theory 20 (2017), 185-192. | DOI | MR | JFM

[19] Malinowska, I. A.: Finite groups all of whose small subgroups are pronormal. Acta Math. Hung. 147 (2015), 324-337. | DOI | MR | JFM

[20] Navarro, G.: Pronormal subgroups and zeros of characters. Proc. Am. Math. Soc. 142 (2014), 3003-3005. | DOI | MR | JFM

[21] Peng, T. A.: Finite groups with pro-normal subgroups. Proc. Am. Math. Soc. 20 (1969), 232-234. | DOI | MR | JFM

[22] Robinson, D. J. S.: A Course in the Theory of Groups. Graduate Texts in Mathematics 80, Springer, New York (1982). | DOI | MR | JFM

[23] Shi, J., Shi, W., Zhang, C.: A note on $p$-nilpotence and solvability of finite groups. J. Algebra 321 (2009), 1555-1560. | DOI | MR | JFM

Cité par Sources :