Sidon basis in polynomial rings over finite fields
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 555-562
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\mathbb {F}_q[t]$ denote the polynomial ring over $\mathbb {F}_q$, the finite field of $q$ elements. Suppose the characteristic of $\mathbb {F}_q$ is not $2$ or $3$. We prove that there exist infinitely many $N \in \mathbb {N}$ such that the set $\{ f \in \mathbb {F}_q[t] \colon \deg f N \}$ contains a Sidon set which is an additive basis of order $3$.
Let $\mathbb {F}_q[t]$ denote the polynomial ring over $\mathbb {F}_q$, the finite field of $q$ elements. Suppose the characteristic of $\mathbb {F}_q$ is not $2$ or $3$. We prove that there exist infinitely many $N \in \mathbb {N}$ such that the set $\{ f \in \mathbb {F}_q[t] \colon \deg f N \}$ contains a Sidon set which is an additive basis of order $3$.
DOI : 10.21136/CMJ.2020.0543-19
Classification : 11B83, 11K31, 11T55
Keywords: Sidon set; additive basis; polynomial rings over finite fields
@article{10_21136_CMJ_2020_0543_19,
     author = {Kuo, Wentang and Yamagishi, Shuntaro},
     title = {Sidon basis in polynomial rings over finite fields},
     journal = {Czechoslovak Mathematical Journal},
     pages = {555--562},
     year = {2021},
     volume = {71},
     number = {2},
     doi = {10.21136/CMJ.2020.0543-19},
     mrnumber = {4263186},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0543-19/}
}
TY  - JOUR
AU  - Kuo, Wentang
AU  - Yamagishi, Shuntaro
TI  - Sidon basis in polynomial rings over finite fields
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 555
EP  - 562
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0543-19/
DO  - 10.21136/CMJ.2020.0543-19
LA  - en
ID  - 10_21136_CMJ_2020_0543_19
ER  - 
%0 Journal Article
%A Kuo, Wentang
%A Yamagishi, Shuntaro
%T Sidon basis in polynomial rings over finite fields
%J Czechoslovak Mathematical Journal
%D 2021
%P 555-562
%V 71
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0543-19/
%R 10.21136/CMJ.2020.0543-19
%G en
%F 10_21136_CMJ_2020_0543_19
Kuo, Wentang; Yamagishi, Shuntaro. Sidon basis in polynomial rings over finite fields. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 555-562. doi: 10.21136/CMJ.2020.0543-19

[1] Cilleruelo, J.: Combinatorial problems in finite fields and Sidon sets. Combinatorica 32 (2012), 497-511. | DOI | MR | JFM

[2] Cilleruelo, J.: On Sidon sets and asymptotic bases. Proc. Lond. Math. Soc. (3) 111 (2015), 1206-1230. | DOI | MR | JFM

[3] Deshouillers, J.-M., Plagne, A.: A Sidon basis. Acta Math. Hung. 123 (2009), 233-238. | DOI | MR | JFM

[4] Erdős, P., Sárközy, A., Sós, V. T.: On additive properties of general sequences. Discrete Math. 136 (1994), 75-99. | DOI | MR | JFM

[5] Erdős, P., Sárközy, A., Sós, V. T.: On sum sets of Sidon sets I. J. Number Theory 47 (1994), 329-347. | DOI | MR | JFM

[6] Erdős, P., Turán, P.: On a problem of Sidon in additive number theory, and on some related problems. J. Lond. Math. Soc. 16 (1941), 212-215. | DOI | MR | JFM

[7] Kiss, S. Z.: On Sidon sets which are asymptotic basis. Acta Math. Hung. 128 (2010), 46-58. | DOI | MR | JFM

[8] Kiss, S. Z., Rozgonyi, E., Sándor, C.: On Sidon sets which are asymptotic bases of order 4. Funct. Approximatio, Comment. Math. 51 (2014), 393-413. | DOI | MR | JFM

[9] Konyagin, S. V., Lev, V. F.: The Erdős-Turán problem in infinite groups. Additive Number Theory Springer, New York (2010), 195-202. | DOI | MR | JFM

[10] Lang, S., Weil, A.: Number of points of varieties in finite fields. Am. J. Math. 76 (1954), 819-827. | DOI | MR | JFM

[11] O'Bryant, K.: A complete annotated bibliography of work related to Sidon sequences. Electron. J. Comb. DS11 (2004), 39 pages. | JFM

Cité par Sources :