Sidon basis in polynomial rings over finite fields
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 555-562.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\mathbb {F}_q[t]$ denote the polynomial ring over $\mathbb {F}_q$, the finite field of $q$ elements. Suppose the characteristic of $\mathbb {F}_q$ is not $2$ or $3$. We prove that there exist infinitely many $N \in \mathbb {N}$ such that the set $\{ f \in \mathbb {F}_q[t] \colon \deg f N \}$ contains a Sidon set which is an additive basis of order $3$.
DOI : 10.21136/CMJ.2020.0543-19
Classification : 11B83, 11K31, 11T55
Keywords: Sidon set; additive basis; polynomial rings over finite fields
@article{10_21136_CMJ_2020_0543_19,
     author = {Kuo, Wentang and Yamagishi, Shuntaro},
     title = {Sidon basis in polynomial rings over finite fields},
     journal = {Czechoslovak Mathematical Journal},
     pages = {555--562},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2021},
     doi = {10.21136/CMJ.2020.0543-19},
     mrnumber = {4263186},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0543-19/}
}
TY  - JOUR
AU  - Kuo, Wentang
AU  - Yamagishi, Shuntaro
TI  - Sidon basis in polynomial rings over finite fields
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 555
EP  - 562
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0543-19/
DO  - 10.21136/CMJ.2020.0543-19
LA  - en
ID  - 10_21136_CMJ_2020_0543_19
ER  - 
%0 Journal Article
%A Kuo, Wentang
%A Yamagishi, Shuntaro
%T Sidon basis in polynomial rings over finite fields
%J Czechoslovak Mathematical Journal
%D 2021
%P 555-562
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0543-19/
%R 10.21136/CMJ.2020.0543-19
%G en
%F 10_21136_CMJ_2020_0543_19
Kuo, Wentang; Yamagishi, Shuntaro. Sidon basis in polynomial rings over finite fields. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 555-562. doi : 10.21136/CMJ.2020.0543-19. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0543-19/

Cité par Sources :