Keywords: recurrence relation; polynomial sequence; support; real zeros
@article{10_21136_CMJ_2020_0535_18,
author = {Ndikubwayo, Innocent},
title = {Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation},
journal = {Czechoslovak Mathematical Journal},
pages = {793--804},
year = {2020},
volume = {70},
number = {3},
doi = {10.21136/CMJ.2020.0535-18},
mrnumber = {4151706},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0535-18/}
}
TY - JOUR AU - Ndikubwayo, Innocent TI - Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation JO - Czechoslovak Mathematical Journal PY - 2020 SP - 793 EP - 804 VL - 70 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0535-18/ DO - 10.21136/CMJ.2020.0535-18 LA - en ID - 10_21136_CMJ_2020_0535_18 ER -
%0 Journal Article %A Ndikubwayo, Innocent %T Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation %J Czechoslovak Mathematical Journal %D 2020 %P 793-804 %V 70 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0535-18/ %R 10.21136/CMJ.2020.0535-18 %G en %F 10_21136_CMJ_2020_0535_18
Ndikubwayo, Innocent. Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 793-804. doi: 10.21136/CMJ.2020.0535-18
[1] Beraha, S., Kahane, J., Weiss, N. J.: Limits of zeros of recursively defined families of polynomials. Studies in Foundations and Combinatorics Adv. Math., Suppl. Stud. 1, Academic Press, New York (1978), 213-232. | MR | JFM
[2] Biggs, N.: Equimodular curves. Discrete Math. 259 (2002), 37-57. | DOI | MR | JFM
[3] Brändén, P.: Unimodality, log-concavity, real-rootedness and beyond. Handbook of Enumerative Combinatorics Discrete Mathematics and Its Applications, CRC Press, Boca Raton (2015), 437-483. | DOI | MR | JFM
[4] Carleson, L., Gamelin, T. W.: Complex Dynamics. Universitext: Tracts in Mathematics, Springer, New York (1993). | DOI | MR | JFM
[5] Dilcher, K., Stolarsky, K. B.: Zeros of the Wronskian of a polynomial. J. Math. Anal. Appl. 162 (1991), 430-451. | DOI | MR | JFM
[6] Kostov, V. P.: Topics on Hyperbolic Polynomials in One Variable. Panoramas et Synthèses 33, Société Mathématique de France, Paris (2011). | MR | JFM
[7] Kostov, V. P., Shapiro, B., Tyaglov, M.: Maximal univalent disks of real rational functions and Hermite-Biehler polynomials. Proc. Am. Math. Soc. 139 (2011), 1625-1635. | DOI | MR | JFM
[8] Rahman, Q. I., Schmeisser, G.: Analytic Theory of Polynomials. London Mathematical Society Monographs 26, Oxford University Press, Oxford (2002). | MR | JFM
[9] Tran, K.: Connections between discriminants and the root distribution of polynomials with rational generating function. J. Math. Anal. Appl. 410 (2014), 330-340. | DOI | MR | JFM
[10] Tran, K.: The root distribution of polynomials with a three-term recurrence. J. Math. Anal. Appl. 421 (2015), 878-892. | DOI | MR | JFM
Cité par Sources :