Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 793-804
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper establishes the necessary and sufficient conditions for the reality of all the zeros in a polynomial sequence $\{P_i\}_{i=1}^{\infty }$ generated by a three-term recurrence relation $P_i(x)+ Q_1(x)P_{i-1}(x) +Q_2(x) P_{i-2}(x)=0$ with the standard initial conditions $P_{0}(x)=1, P_{-1}(x)=0,$ where $Q_1(x)$ and $Q_2(x)$ are arbitrary real polynomials.
This paper establishes the necessary and sufficient conditions for the reality of all the zeros in a polynomial sequence $\{P_i\}_{i=1}^{\infty }$ generated by a three-term recurrence relation $P_i(x)+ Q_1(x)P_{i-1}(x) +Q_2(x) P_{i-2}(x)=0$ with the standard initial conditions $P_{0}(x)=1, P_{-1}(x)=0,$ where $Q_1(x)$ and $Q_2(x)$ are arbitrary real polynomials.
DOI : 10.21136/CMJ.2020.0535-18
Classification : 12D10, 26C10, 30C15
Keywords: recurrence relation; polynomial sequence; support; real zeros
@article{10_21136_CMJ_2020_0535_18,
     author = {Ndikubwayo, Innocent},
     title = {Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {793--804},
     year = {2020},
     volume = {70},
     number = {3},
     doi = {10.21136/CMJ.2020.0535-18},
     mrnumber = {4151706},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0535-18/}
}
TY  - JOUR
AU  - Ndikubwayo, Innocent
TI  - Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 793
EP  - 804
VL  - 70
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0535-18/
DO  - 10.21136/CMJ.2020.0535-18
LA  - en
ID  - 10_21136_CMJ_2020_0535_18
ER  - 
%0 Journal Article
%A Ndikubwayo, Innocent
%T Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation
%J Czechoslovak Mathematical Journal
%D 2020
%P 793-804
%V 70
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0535-18/
%R 10.21136/CMJ.2020.0535-18
%G en
%F 10_21136_CMJ_2020_0535_18
Ndikubwayo, Innocent. Criterion of the reality of zeros in a polynomial sequence satisfying a three-term recurrence relation. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 793-804. doi: 10.21136/CMJ.2020.0535-18

[1] Beraha, S., Kahane, J., Weiss, N. J.: Limits of zeros of recursively defined families of polynomials. Studies in Foundations and Combinatorics Adv. Math., Suppl. Stud. 1, Academic Press, New York (1978), 213-232. | MR | JFM

[2] Biggs, N.: Equimodular curves. Discrete Math. 259 (2002), 37-57. | DOI | MR | JFM

[3] Brändén, P.: Unimodality, log-concavity, real-rootedness and beyond. Handbook of Enumerative Combinatorics Discrete Mathematics and Its Applications, CRC Press, Boca Raton (2015), 437-483. | DOI | MR | JFM

[4] Carleson, L., Gamelin, T. W.: Complex Dynamics. Universitext: Tracts in Mathematics, Springer, New York (1993). | DOI | MR | JFM

[5] Dilcher, K., Stolarsky, K. B.: Zeros of the Wronskian of a polynomial. J. Math. Anal. Appl. 162 (1991), 430-451. | DOI | MR | JFM

[6] Kostov, V. P.: Topics on Hyperbolic Polynomials in One Variable. Panoramas et Synthèses 33, Société Mathématique de France, Paris (2011). | MR | JFM

[7] Kostov, V. P., Shapiro, B., Tyaglov, M.: Maximal univalent disks of real rational functions and Hermite-Biehler polynomials. Proc. Am. Math. Soc. 139 (2011), 1625-1635. | DOI | MR | JFM

[8] Rahman, Q. I., Schmeisser, G.: Analytic Theory of Polynomials. London Mathematical Society Monographs 26, Oxford University Press, Oxford (2002). | MR | JFM

[9] Tran, K.: Connections between discriminants and the root distribution of polynomials with rational generating function. J. Math. Anal. Appl. 410 (2014), 330-340. | DOI | MR | JFM

[10] Tran, K.: The root distribution of polynomials with a three-term recurrence. J. Math. Anal. Appl. 421 (2015), 878-892. | DOI | MR | JFM

Cité par Sources :