$q$-analogues of two supercongruences of Z.-W. Sun
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 757-765
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We give several different $q$-analogues of the following two congruences of \hbox {Z.-W. Sun}: $$ \sum _{k=0}^{(p^{r}-1)/2}\frac {1}{8^k}{2k\choose k} \equiv \Bigl (\frac {2}{p^r}\Bigr )\pmod {p^2}\quad \text {and}\quad \sum _{k=0}^{(p^{r}-1)/2}\frac {1}{16^k}{2k\choose k}\equiv \Bigl (\frac {3}{p^r}\Bigr )\pmod {p^2}, $$ where $p$ is an odd prime, $r$ is a positive integer, and $(\frac mn)$ is the Jacobi symbol. The proofs of them require the use of some curious $q$-series identities, two of which are related to Franklin's involution on partitions into distinct parts. We also confirm a conjecture of the latter author and Zeng in 2012.
DOI :
10.21136/CMJ.2020.0516-18
Classification :
05A10, 05A30, 11A07, 11B65
Keywords: congruences; $q$-binomial coefficient; cyclotomic polynomial; Franklin's involution
Keywords: congruences; $q$-binomial coefficient; cyclotomic polynomial; Franklin's involution
@article{10_21136_CMJ_2020_0516_18,
author = {Gu, Cheng-Yang and Guo, Victor J. W.},
title = {$q$-analogues of two supercongruences of {Z.-W.} {Sun}},
journal = {Czechoslovak Mathematical Journal},
pages = {757--765},
publisher = {mathdoc},
volume = {70},
number = {3},
year = {2020},
doi = {10.21136/CMJ.2020.0516-18},
mrnumber = {4151703},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0516-18/}
}
TY - JOUR AU - Gu, Cheng-Yang AU - Guo, Victor J. W. TI - $q$-analogues of two supercongruences of Z.-W. Sun JO - Czechoslovak Mathematical Journal PY - 2020 SP - 757 EP - 765 VL - 70 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0516-18/ DO - 10.21136/CMJ.2020.0516-18 LA - en ID - 10_21136_CMJ_2020_0516_18 ER -
%0 Journal Article %A Gu, Cheng-Yang %A Guo, Victor J. W. %T $q$-analogues of two supercongruences of Z.-W. Sun %J Czechoslovak Mathematical Journal %D 2020 %P 757-765 %V 70 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0516-18/ %R 10.21136/CMJ.2020.0516-18 %G en %F 10_21136_CMJ_2020_0516_18
Gu, Cheng-Yang; Guo, Victor J. W. $q$-analogues of two supercongruences of Z.-W. Sun. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 757-765. doi: 10.21136/CMJ.2020.0516-18
Cité par Sources :