$q$-analogues of two supercongruences of Z.-W. Sun
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 757-765
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give several different $q$-analogues of the following two congruences of \hbox {Z.-W. Sun}: $$ \sum _{k=0}^{(p^{r}-1)/2}\frac {1}{8^k}{2k\choose k} \equiv \Bigl (\frac {2}{p^r}\Bigr )\pmod {p^2}\quad \text {and}\quad \sum _{k=0}^{(p^{r}-1)/2}\frac {1}{16^k}{2k\choose k}\equiv \Bigl (\frac {3}{p^r}\Bigr )\pmod {p^2}, $$ where $p$ is an odd prime, $r$ is a positive integer, and $(\frac mn)$ is the Jacobi symbol. The proofs of them require the use of some curious $q$-series identities, two of which are related to Franklin's involution on partitions into distinct parts. We also confirm a conjecture of the latter author and Zeng in 2012.
We give several different $q$-analogues of the following two congruences of \hbox {Z.-W. Sun}: $$ \sum _{k=0}^{(p^{r}-1)/2}\frac {1}{8^k}{2k\choose k} \equiv \Bigl (\frac {2}{p^r}\Bigr )\pmod {p^2}\quad \text {and}\quad \sum _{k=0}^{(p^{r}-1)/2}\frac {1}{16^k}{2k\choose k}\equiv \Bigl (\frac {3}{p^r}\Bigr )\pmod {p^2}, $$ where $p$ is an odd prime, $r$ is a positive integer, and $(\frac mn)$ is the Jacobi symbol. The proofs of them require the use of some curious $q$-series identities, two of which are related to Franklin's involution on partitions into distinct parts. We also confirm a conjecture of the latter author and Zeng in 2012.
DOI : 10.21136/CMJ.2020.0516-18
Classification : 05A10, 05A30, 11A07, 11B65
Keywords: congruences; $q$-binomial coefficient; cyclotomic polynomial; Franklin's involution
@article{10_21136_CMJ_2020_0516_18,
     author = {Gu, Cheng-Yang and Guo, Victor J. W.},
     title = {$q$-analogues of two supercongruences of {Z.-W.} {Sun}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {757--765},
     year = {2020},
     volume = {70},
     number = {3},
     doi = {10.21136/CMJ.2020.0516-18},
     mrnumber = {4151703},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0516-18/}
}
TY  - JOUR
AU  - Gu, Cheng-Yang
AU  - Guo, Victor J. W.
TI  - $q$-analogues of two supercongruences of Z.-W. Sun
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 757
EP  - 765
VL  - 70
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0516-18/
DO  - 10.21136/CMJ.2020.0516-18
LA  - en
ID  - 10_21136_CMJ_2020_0516_18
ER  - 
%0 Journal Article
%A Gu, Cheng-Yang
%A Guo, Victor J. W.
%T $q$-analogues of two supercongruences of Z.-W. Sun
%J Czechoslovak Mathematical Journal
%D 2020
%P 757-765
%V 70
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0516-18/
%R 10.21136/CMJ.2020.0516-18
%G en
%F 10_21136_CMJ_2020_0516_18
Gu, Cheng-Yang; Guo, Victor J. W. $q$-analogues of two supercongruences of Z.-W. Sun. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 757-765. doi: 10.21136/CMJ.2020.0516-18

[1] Andrews, G. E.: The Theory of Partitions. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1998). | DOI | MR | JFM

[2] Berkovich, A., Garvan, F. G.: Some observations on Dyson's new symmetries of partitions. J. Comb. Theory, Ser. A 100 (2002), 61-93. | DOI | MR | JFM

[3] Cigler, J.: A new class of $q$-Fibonacci polynomials. Electron. J. Comb. 10 (2003), Research paper R19, 15 pages. | MR | JFM

[4] Ekhad, S. B., Zeilberger, D.: The number of solutions of $X^2=0$ in triangular matrices over $GF(q)$. Electron. J. Comb. 3 (1996), Research paper R2, 2 pages. | MR | JFM

[5] Guo, V. J. W.: Common $q$-analogues of some different supercongruences. Result. Math. 74 (2019), Article No. 131, 15 pages. | DOI | MR | JFM

[6] Guo, V. J. W., Liu, J.-C.: $q$-analogues of two Ramanujan-type formulas for $1/\pi$. J. Difference Equ. Appl. 24 (2018), 1368-1373. | DOI | MR | JFM

[7] Guo, V. J. W., Wang, S.-D.: Factors of sums and alternating sums of products of $q$-binomial coefficients and powers of $q$-integers. Taiwanese J. Math. 23 (2019), 11-27. | DOI | MR | JFM

[8] Guo, V. J. W., Zeng, J.: New congruences for sums involving Apéry numbers or central Delannoy numbers. Int. J. Number Theory 8 (2012), 2003-2016. | DOI | MR | JFM

[9] Guo, V. J. W., Zudilin, W.: A $q$-microscope for supercongruences. Adv. Math. 346 (2019), 329-358. | DOI | MR | JFM

[10] Ismail, M. E. H., Kim, D., Stanton, D.: Lattice paths and positive trigonometric sums. Constructive Approximation 15 (1999), 69-81. | DOI | MR | JFM

[11] Liu, J.-C.: Some finite generalizations of Euler's pentagonal number theorem. Czech. Math. J. 67 (2017), 525-531. | DOI | MR | JFM

[12] Liu, J.-C.: Some finite generalizations of Gauss's square exponent identity. Rocky Mt. J. Math. 47 (2017), 2723-2730. | DOI | MR | JFM

[13] Slater, L. J.: A new proof of Rogers's transformations of infinite series. Proc. Lond. Math. Soc., II. Ser. 53 (1951), 460-475. | DOI | MR | JFM

[14] Sun, Z.-W.: Fibonacci numbers modulo cubes of primes. Taiwanese J. Math. 17 (2013), 1523-1543. | DOI | MR | JFM

Cité par Sources :