A variation of Thompson's conjecture for the symmetric groups
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 743-755.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $G$ be a finite group and let $N(G)$ denote the set of conjugacy class sizes of $G$. Thompson's conjecture states that if $G$ is a centerless group and $S$ is a non-abelian simple group satisfying $N(G)=N(S)$, then $G\cong S$. In this paper, we investigate a variation of this conjecture for some symmetric groups under a weaker assumption. In particular, it is shown that $G\cong {\rm Sym}(p+1)$ if and only if $|G|=(p+1)!$ and $G$ has a special conjugacy class of size $(p + 1)!/p$, where $p>5$ is a prime number. Consequently, if $G$ is a centerless group with $N(G)=N({\rm Sym}(p+1))$, then $G \cong {\rm Sym}(p+1)$.
DOI : 10.21136/CMJ.2020.0501-18
Classification : 20D08, 20D60
Keywords: Thompson's conjecture; conjugacy class size; symmetric groups; prime graph
@article{10_21136_CMJ_2020_0501_18,
     author = {Abedei, Mahdi and Iranmanesh, Ali and Shirjian, Farrokh},
     title = {A variation of {Thompson's} conjecture for the symmetric groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {743--755},
     publisher = {mathdoc},
     volume = {70},
     number = {3},
     year = {2020},
     doi = {10.21136/CMJ.2020.0501-18},
     mrnumber = {4151702},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0501-18/}
}
TY  - JOUR
AU  - Abedei, Mahdi
AU  - Iranmanesh, Ali
AU  - Shirjian, Farrokh
TI  - A variation of Thompson's conjecture for the symmetric groups
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 743
EP  - 755
VL  - 70
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0501-18/
DO  - 10.21136/CMJ.2020.0501-18
LA  - en
ID  - 10_21136_CMJ_2020_0501_18
ER  - 
%0 Journal Article
%A Abedei, Mahdi
%A Iranmanesh, Ali
%A Shirjian, Farrokh
%T A variation of Thompson's conjecture for the symmetric groups
%J Czechoslovak Mathematical Journal
%D 2020
%P 743-755
%V 70
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0501-18/
%R 10.21136/CMJ.2020.0501-18
%G en
%F 10_21136_CMJ_2020_0501_18
Abedei, Mahdi; Iranmanesh, Ali; Shirjian, Farrokh. A variation of Thompson's conjecture for the symmetric groups. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 743-755. doi : 10.21136/CMJ.2020.0501-18. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0501-18/

Cité par Sources :