A variation of Thompson's conjecture for the symmetric groups
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 743-755 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a finite group and let $N(G)$ denote the set of conjugacy class sizes of $G$. Thompson's conjecture states that if $G$ is a centerless group and $S$ is a non-abelian simple group satisfying $N(G)=N(S)$, then $G\cong S$. In this paper, we investigate a variation of this conjecture for some symmetric groups under a weaker assumption. In particular, it is shown that $G\cong {\rm Sym}(p+1)$ if and only if $|G|=(p+1)!$ and $G$ has a special conjugacy class of size $(p + 1)!/p$, where $p>5$ is a prime number. Consequently, if $G$ is a centerless group with $N(G)=N({\rm Sym}(p+1))$, then $G \cong {\rm Sym}(p+1)$.
Let $G$ be a finite group and let $N(G)$ denote the set of conjugacy class sizes of $G$. Thompson's conjecture states that if $G$ is a centerless group and $S$ is a non-abelian simple group satisfying $N(G)=N(S)$, then $G\cong S$. In this paper, we investigate a variation of this conjecture for some symmetric groups under a weaker assumption. In particular, it is shown that $G\cong {\rm Sym}(p+1)$ if and only if $|G|=(p+1)!$ and $G$ has a special conjugacy class of size $(p + 1)!/p$, where $p>5$ is a prime number. Consequently, if $G$ is a centerless group with $N(G)=N({\rm Sym}(p+1))$, then $G \cong {\rm Sym}(p+1)$.
DOI : 10.21136/CMJ.2020.0501-18
Classification : 20D08, 20D60
Keywords: Thompson's conjecture; conjugacy class size; symmetric groups; prime graph
@article{10_21136_CMJ_2020_0501_18,
     author = {Abedei, Mahdi and Iranmanesh, Ali and Shirjian, Farrokh},
     title = {A variation of {Thompson's} conjecture for the symmetric groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {743--755},
     year = {2020},
     volume = {70},
     number = {3},
     doi = {10.21136/CMJ.2020.0501-18},
     mrnumber = {4151702},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0501-18/}
}
TY  - JOUR
AU  - Abedei, Mahdi
AU  - Iranmanesh, Ali
AU  - Shirjian, Farrokh
TI  - A variation of Thompson's conjecture for the symmetric groups
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 743
EP  - 755
VL  - 70
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0501-18/
DO  - 10.21136/CMJ.2020.0501-18
LA  - en
ID  - 10_21136_CMJ_2020_0501_18
ER  - 
%0 Journal Article
%A Abedei, Mahdi
%A Iranmanesh, Ali
%A Shirjian, Farrokh
%T A variation of Thompson's conjecture for the symmetric groups
%J Czechoslovak Mathematical Journal
%D 2020
%P 743-755
%V 70
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0501-18/
%R 10.21136/CMJ.2020.0501-18
%G en
%F 10_21136_CMJ_2020_0501_18
Abedei, Mahdi; Iranmanesh, Ali; Shirjian, Farrokh. A variation of Thompson's conjecture for the symmetric groups. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 743-755. doi: 10.21136/CMJ.2020.0501-18

[1] Ahanjideh, N.: On Thompson's conjecture for some finite simple groups. J. Algebra 344 (2011), 205-228. | DOI | MR | JFM

[2] Asboei, A. K., Darafsheh, M. R., Mohammadyari, R.: The influence of order and conjugacy class length on the structure of finite groups. Hokkaido Math. J. 47 (2018), 25-32. | DOI | MR | JFM

[3] Asboei, A. K., Mohammadyari, R.: Characterization of the alternating groups by their order and one conjugacy class length. Czech. Math. J. 66 (2016), 63-70. | DOI | MR | JFM

[4] Asboei, A. K., Mohammadyari, R.: Recognizing alternating groups by their order and one conjugacy class length. J. Algebra Appl. 15 (2016), Article ID 1650021. | DOI | MR | JFM

[5] Asboei, A. K., Mohammadyari, R.: New characterization of symmetric groups of prime degree. Acta Univ. Sapientiae, Math. 9 (2017), 5-12. | DOI | MR | JFM

[6] Chen, G.: On Thompson's conjecture for sporadic groups. Proc. of the First Academic Annual Meeting of Youth Fujian Science and Technology Publishing House, Fuzhou (1992), 1-6 Chinese. | MR

[7] Chen, G.: On Thompson's Conjecture, PhD Thesis. Sichuan University, Chengdu (1994). | MR

[8] Chen, G.: On the structure of Frobenius group and 2-Frobenius group. J. Southwest China Normal. Univ. 20 (1995), 485-487 Chinese.

[9] Chen, G.: On Thompson's conjecture. J. Algebra 185 (1996), 184-193. | DOI | MR | JFM

[10] Chen, G.: Further reflections on Thompson's conjecture. J. Algebra 218 (1999), 276-285. | DOI | MR | JFM

[11] Chen, Y., Chen, G., Li, J.: Recognizing simple $K_4$-groups by few special conjugacy class sizes. Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 51-72. | DOI | MR | JFM

[12] Gorenstein, D.: Finite Groups. Chelsea Publishing, New York (1980). | MR | JFM

[13] Iranmanesh, A., Alavi, S. H., Khosravi, B.: A characterization of $PSL(3,q)$ where $q$ is an odd prime power. J. Pure Appl. Algebra 170 (2002), 243-254. | DOI | MR | JFM

[14] Kondrat'ev, A. S., Mazurov, V. D.: Recognition of alternating groups of prime degree from their element orders. Sib. Math. J. 41 (2000), 294-302 English. Russian original translation from Sib. Mat. Zh. 41 2000 359-369. | DOI | MR | JFM

[15] Li, J. B.: Finite Groups with Special Conjugacy Class Sizes or Generalized Permutable Subgroups, Ph.D. Thesis. Southwest University, Chongqing (2012).

[16] Mazurov, V. D., (eds.), E. I. Khukhro: The Kourovka Notebook: Unsolved Problems in Group Theory. Institute of Mathematics, Russian Academy of Sciences, Siberian Div., Novosibirsk (2018). | MR | JFM

[17] Shi, W. J., Bi, J. X.: A new characterization of the alternating groups. Southeast Asian Bull. Math. 16 (1992), 81-90. | MR | JFM

[18] Vasil'ev, A. V.: On Thompson's conjecture. Sib. Elektron. Mat. Izv. 6 (2009), 457-464. | MR | JFM

[19] Williams, J. S.: Prime graph components of finite groups. J. Algebra 69 (1981), 487-513. | DOI | MR | JFM

Cité par Sources :