A variation of Thompson's conjecture for the symmetric groups
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 743-755
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $G$ be a finite group and let $N(G)$ denote the set of conjugacy class sizes of $G$. Thompson's conjecture states that if $G$ is a centerless group and $S$ is a non-abelian simple group satisfying $N(G)=N(S)$, then $G\cong S$. In this paper, we investigate a variation of this conjecture for some symmetric groups under a weaker assumption. In particular, it is shown that $G\cong {\rm Sym}(p+1)$ if and only if $|G|=(p+1)!$ and $G$ has a special conjugacy class of size $(p + 1)!/p$, where $p>5$ is a prime number. Consequently, if $G$ is a centerless group with $N(G)=N({\rm Sym}(p+1))$, then $G \cong {\rm Sym}(p+1)$.
DOI :
10.21136/CMJ.2020.0501-18
Classification :
20D08, 20D60
Keywords: Thompson's conjecture; conjugacy class size; symmetric groups; prime graph
Keywords: Thompson's conjecture; conjugacy class size; symmetric groups; prime graph
@article{10_21136_CMJ_2020_0501_18,
author = {Abedei, Mahdi and Iranmanesh, Ali and Shirjian, Farrokh},
title = {A variation of {Thompson's} conjecture for the symmetric groups},
journal = {Czechoslovak Mathematical Journal},
pages = {743--755},
publisher = {mathdoc},
volume = {70},
number = {3},
year = {2020},
doi = {10.21136/CMJ.2020.0501-18},
mrnumber = {4151702},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0501-18/}
}
TY - JOUR AU - Abedei, Mahdi AU - Iranmanesh, Ali AU - Shirjian, Farrokh TI - A variation of Thompson's conjecture for the symmetric groups JO - Czechoslovak Mathematical Journal PY - 2020 SP - 743 EP - 755 VL - 70 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0501-18/ DO - 10.21136/CMJ.2020.0501-18 LA - en ID - 10_21136_CMJ_2020_0501_18 ER -
%0 Journal Article %A Abedei, Mahdi %A Iranmanesh, Ali %A Shirjian, Farrokh %T A variation of Thompson's conjecture for the symmetric groups %J Czechoslovak Mathematical Journal %D 2020 %P 743-755 %V 70 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0501-18/ %R 10.21136/CMJ.2020.0501-18 %G en %F 10_21136_CMJ_2020_0501_18
Abedei, Mahdi; Iranmanesh, Ali; Shirjian, Farrokh. A variation of Thompson's conjecture for the symmetric groups. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 743-755. doi: 10.21136/CMJ.2020.0501-18
Cité par Sources :