Keywords: multiplication operator; commutant of an operator; weighted Bergman space
@article{10_21136_CMJ_2020_0494_18,
author = {Abkar, Ali},
title = {Commutant of multiplication operators in weighted {Bergman} spaces on polydisk},
journal = {Czechoslovak Mathematical Journal},
pages = {727--741},
year = {2020},
volume = {70},
number = {3},
doi = {10.21136/CMJ.2020.0494-18},
mrnumber = {4151701},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0494-18/}
}
TY - JOUR AU - Abkar, Ali TI - Commutant of multiplication operators in weighted Bergman spaces on polydisk JO - Czechoslovak Mathematical Journal PY - 2020 SP - 727 EP - 741 VL - 70 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0494-18/ DO - 10.21136/CMJ.2020.0494-18 LA - en ID - 10_21136_CMJ_2020_0494_18 ER -
%0 Journal Article %A Abkar, Ali %T Commutant of multiplication operators in weighted Bergman spaces on polydisk %J Czechoslovak Mathematical Journal %D 2020 %P 727-741 %V 70 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0494-18/ %R 10.21136/CMJ.2020.0494-18 %G en %F 10_21136_CMJ_2020_0494_18
Abkar, Ali. Commutant of multiplication operators in weighted Bergman spaces on polydisk. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 727-741. doi: 10.21136/CMJ.2020.0494-18
[1] Abkar, A.: Norm approximation by polynomials in some weighted Bergman spaces. J. Funct. Anal. 191 (2002), 224-240. | DOI | MR | JFM
[2] Abkar, A.: Application of a Riesz-type formula to weighted Bergman spaces. Proc. Am. Math. Soc. 131 (2003), 155-164. | DOI | MR | JFM
[3] Abkar, A.: On the commutant of certain operators in the Bergman space. Bull. Malays. Math. Sci. Soc. (2) 35 (2012), 499-502. | MR | JFM
[4] Chattopadhyay, A., Das, A. B. Krishna, Sarkar, J., Sarkar, S.: Wandering subspaces of the Bergman space and the Dirichlet space over $\mathbb{D}^n$. Integral Equations Oper. Theory 79 (2014), 567-577. | DOI | MR | JFM
[5] Chung, Y.-B., Na, H.-G.: Toeplitz operators on Hardy and Bergman spaces over bounded domains in the plane. Honam Math. J. 39 (2017), 143-159. | DOI | MR | JFM
[6] Dan, H., Huang, H.: Multiplication operators defined by a class of polynomials on $L^2_a(\mathbb{D}^2)$. Integral Equations Oper. Theory 80 (2014), 581-601. | DOI | MR | JFM
[7] Ding, X., Sang, Y.: The pluriharmonic Hardy space and Toeplitz operators. Result. Math. 72 (2017), 1473-1497. | DOI | MR | JFM
[8] Douglas, R. G.: Banach Algebra Techniques in Operator Theory. Pure and Applied Mathematics 49, Academic Press, New York (1972). | MR | JFM
[9] Duren, P., Schuster, A.: Bergman Spaces. Mathematical Surveys and Monographs 100, American Mathematical Society, Providence (2004). | DOI | MR | JFM
[10] Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Graduate Texts in Mathematics 199, Springer, New York (2000). | DOI | MR | JFM
[11] Shi, Y., Lu, Y.: Reducing subspaces for Toeplitz operators on the polydisk. Bull. Korean Math. Soc. 50 (2013), 687-696. | DOI | MR | JFM
[12] Zhu, K.: Reducing subspaces for a class of multiplication operators. J. Lond. Math. Soc., II. Ser. 62 (2000), 553-568. | DOI | MR | JFM
[13] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226, Springer, New York (2005). | DOI | MR | JFM
Cité par Sources :