Keywords: shadowing; chain transitive; equicontinuity; uniform space
@article{10_21136_CMJ_2020_0488_18,
author = {Wang, Huoyun},
title = {Equicontinuity, shadowing and distality in general topological spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {711--726},
year = {2020},
volume = {70},
number = {3},
doi = {10.21136/CMJ.2020.0488-18},
mrnumber = {4151700},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0488-18/}
}
TY - JOUR AU - Wang, Huoyun TI - Equicontinuity, shadowing and distality in general topological spaces JO - Czechoslovak Mathematical Journal PY - 2020 SP - 711 EP - 726 VL - 70 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0488-18/ DO - 10.21136/CMJ.2020.0488-18 LA - en ID - 10_21136_CMJ_2020_0488_18 ER -
%0 Journal Article %A Wang, Huoyun %T Equicontinuity, shadowing and distality in general topological spaces %J Czechoslovak Mathematical Journal %D 2020 %P 711-726 %V 70 %N 3 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0488-18/ %R 10.21136/CMJ.2020.0488-18 %G en %F 10_21136_CMJ_2020_0488_18
Wang, Huoyun. Equicontinuity, shadowing and distality in general topological spaces. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 711-726. doi: 10.21136/CMJ.2020.0488-18
[1] Akin, E., Auslander, J., Berg, K.: When is a transitive map chaotic?. Convergence in Ergodic Theory and Probability Ohio State University Mathematical Research Institute Publications 5, de Gruyter, Berlin (1996), 25-40. | DOI | MR | JFM
[2] Akin, E., Kolyada, S.: Li-Yorke sensitivity. Nonlinearity 16 (2003), 1421-1433. | DOI | MR | JFM
[3] Auslander, J., Greschonig, G., Nagar, A.: Reflections on equicontinuity. Proc. Am. Math. Soc. 142 (2014), 3129-3137. | DOI | MR | JFM
[4] Auslander, J., Yorke, J. A.: Interval maps, factors of maps, and chaos. Tohoku Math. J., II. Ser. 32 (1980), 177-188. | DOI | MR | JFM
[5] Bergelson, V.: Minimal idempotents and ergodic Ramsey theory. Topics in Dynamics and Ergodic Theory London Mathematical Society Lecture Note Series 310, Cambridge University Press, Cambridge (2003), 8-39. | DOI | MR | JFM
[6] Blanchard, F., Glasner, E., Kolyada, S., Maass, A.: On Li-York pairs. J. Reine Angew. Math. 547 (2002), 51-68. | DOI | MR | JFM
[7] Brian, W.: Abstract $\omega$-limit sets. J. Symb. Log. 83 (2018), 477-495. | DOI | MR | JFM
[8] Ceccherini-Silberstein, T., Coornaert, M.: Sensitivity and Devaney's chaos in uniform spaces. J. Dyn. Control Syst. 19 (2013), 349-357. | DOI | MR | JFM
[9] Das, P., Das, T.: Various types of shadowing and specification on uniform spaces. J. Dyn. Control Syst. 24 (2018), 253-267. | DOI | MR | JFM
[10] Dastjerdi, D. A., Hosseini, M.: Shadowing with chain transitivity. Topology Appl. 156 (2009), 2193-2195. | DOI | MR | JFM
[11] Ellis, D., Ellis, R., Nerurkar, M.: The topological dynamics of semigroup actions. Trans. Am. Math. Soc. 353 (2001), 1279-1320. | DOI | MR | JFM
[12] Engelking, R.: General Topology. Sigma Series in Pure Mathematics 6, Heldermann, Berlin (1989). | MR | JFM
[13] Glasner, E., Weiss, B.: Sensitive dependence on initial conditions. Nonlinearity 6 (1993), 1067-1075. | DOI | MR | JFM
[14] Good, C., Macías, S.: What is topological about topological dynamics?. Discrete Contin. Dyn. Syst. 38 (2018), 1007-1031. | DOI | MR | JFM
[15] Hindman, N., Strauss, D.: Algebra in the Stone-Čech Compactification: Theory and Applications. De Gruyter Expositions in Mathematics 27, Walter de Gruyter, Berlin (1998). | DOI | MR | JFM
[16] Hood, B. M.: Topological entropy and uniform spaces. J. Lond. Math. Soc., II. Ser. 8 (1974), 633-641. | DOI | MR | JFM
Cité par Sources :