The module of vector-valued modular forms is Cohen-Macaulay
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1211-1218
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
Let $H$ denote a finite index subgroup of the modular group $\Gamma $ and let $\rho $ denote a finite-dimensional complex representation of $H.$ Let $M(\rho )$ denote the collection of holomorphic vector-valued modular forms for $\rho $ and let $M(H)$ denote the collection of modular forms on $H$. Then $M(\rho )$ is a $\mathbb {Z}$-graded $M(H)$-module. It has been proven that $M(\rho )$ may not be projective as a $M(H)$-module. We prove that $M(\rho )$ is Cohen-Macaulay as a $M(H)$-module. We also explain how to apply this result to prove that if $M(H)$ is a polynomial ring, then $M(\rho )$ is a free $M(H)$-module of rank $\dim \rho .$
Let $H$ denote a finite index subgroup of the modular group $\Gamma $ and let $\rho $ denote a finite-dimensional complex representation of $H.$ Let $M(\rho )$ denote the collection of holomorphic vector-valued modular forms for $\rho $ and let $M(H)$ denote the collection of modular forms on $H$. Then $M(\rho )$ is a $\mathbb {Z}$-graded $M(H)$-module. It has been proven that $M(\rho )$ may not be projective as a $M(H)$-module. We prove that $M(\rho )$ is Cohen-Macaulay as a $M(H)$-module. We also explain how to apply this result to prove that if $M(H)$ is a polynomial ring, then $M(\rho )$ is a free $M(H)$-module of rank $\dim \rho .$
DOI :
10.21136/CMJ.2020.0476-19
Classification :
11F03, 13C14
Keywords: vector-valued modular form; Cohen-Macaulay module
Keywords: vector-valued modular form; Cohen-Macaulay module
@article{10_21136_CMJ_2020_0476_19,
author = {Gottesman, Richard},
title = {The module of vector-valued modular forms is {Cohen-Macaulay}},
journal = {Czechoslovak Mathematical Journal},
pages = {1211--1218},
year = {2020},
volume = {70},
number = {4},
doi = {10.21136/CMJ.2020.0476-19},
mrnumber = {4181810},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0476-19/}
}
TY - JOUR AU - Gottesman, Richard TI - The module of vector-valued modular forms is Cohen-Macaulay JO - Czechoslovak Mathematical Journal PY - 2020 SP - 1211 EP - 1218 VL - 70 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0476-19/ DO - 10.21136/CMJ.2020.0476-19 LA - en ID - 10_21136_CMJ_2020_0476_19 ER -
%0 Journal Article %A Gottesman, Richard %T The module of vector-valued modular forms is Cohen-Macaulay %J Czechoslovak Mathematical Journal %D 2020 %P 1211-1218 %V 70 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0476-19/ %R 10.21136/CMJ.2020.0476-19 %G en %F 10_21136_CMJ_2020_0476_19
Gottesman, Richard. The module of vector-valued modular forms is Cohen-Macaulay. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1211-1218. doi: 10.21136/CMJ.2020.0476-19
Cité par Sources :