Keywords: vector-valued modular form; Cohen-Macaulay module
@article{10_21136_CMJ_2020_0476_19,
author = {Gottesman, Richard},
title = {The module of vector-valued modular forms is {Cohen-Macaulay}},
journal = {Czechoslovak Mathematical Journal},
pages = {1211--1218},
year = {2020},
volume = {70},
number = {4},
doi = {10.21136/CMJ.2020.0476-19},
mrnumber = {4181810},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0476-19/}
}
TY - JOUR AU - Gottesman, Richard TI - The module of vector-valued modular forms is Cohen-Macaulay JO - Czechoslovak Mathematical Journal PY - 2020 SP - 1211 EP - 1218 VL - 70 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0476-19/ DO - 10.21136/CMJ.2020.0476-19 LA - en ID - 10_21136_CMJ_2020_0476_19 ER -
%0 Journal Article %A Gottesman, Richard %T The module of vector-valued modular forms is Cohen-Macaulay %J Czechoslovak Mathematical Journal %D 2020 %P 1211-1218 %V 70 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0476-19/ %R 10.21136/CMJ.2020.0476-19 %G en %F 10_21136_CMJ_2020_0476_19
Gottesman, Richard. The module of vector-valued modular forms is Cohen-Macaulay. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1211-1218. doi: 10.21136/CMJ.2020.0476-19
[1] Bannai, E., Koike, M., Munemasa, A., Sekiguchi, J.: Some results on modular forms-subgroups of the modular group whose ring of modular forms is a polynomial ring. Groups and Combinatorics - In Memory of Michio Suzuki Advanced Studies in Pure Mathematics 32. Mathematical Society Japan, Tokyo (2001), 245-254. | DOI | MR | JFM
[2] Benson, D. J.: Polynomial Invariants of Finite Groups. London Mathematical Society Lecture Note Series 190. Cambridge University Press, Cambridge (1993). | DOI | MR | JFM
[3] Candelori, L., Franc, C.: Vector-valued modular forms and the modular orbifold of elliptic curves. Int. J. Number Theory 13 (2017), 39-63. | DOI | MR | JFM
[4] Candelori, L., Franc, C.: Vector bundles and modular forms for Fuchsian groups of genus zero. Commun. Number Theory Phys. 13 (2019), 487-528. | DOI | MR | JFM
[5] Franc, C., Mason, G.: Fourier coefficients of vector-valued modular forms of dimension 2. Can. Math. Bull. 57 (2014), 485-494. | DOI | MR | JFM
[6] Franc, C., Mason, G.: Hypergeometric series, modular linear differential equations and vector-valued modular forms. Ramanujan J. 41 (2016), 233-267. | DOI | MR | JFM
[7] Gannon, T.: The theory of vector-valued modular forms for the modular group. Conformal Field Theory, Automorphic Forms and Related Topics Contributions in Mathematical and Computational Sciences 8. Springer, Berlin (2014), 247-286. | DOI | MR | JFM
[8] Gottesman, R.: The arithmetic of vector-valued modular forms on $\Gamma_{0}(2)$. Int. J. Number Theory 16 (2020), 241-289. | DOI | MR | JFM
[9] Marks, C.: Fourier coefficients of three-dimensional vector-valued modular forms. Commun. Number Theory Phys. 9 (2015), 387-411. | DOI | MR | JFM
[10] Marks, C., Mason, G.: Structure of the module of vector-valued modular forms. J. Lond. Math. Soc., II. Ser. 82 (2010), 32-48. | DOI | MR | JFM
[11] Mason, G.: On the Fourier coefficients of 2-dimensional vector-valued modular forms. Proc. Am. Math. Soc. 140 (2012), 1921-1930. | DOI | MR | JFM
[12] Selberg, A.: On the estimation of Fourier coefficients of modular forms. Proc. Sympos. Pure Math. 8 American Mathematical Society, Providence (1965), 1-15. | MR | JFM
Cité par Sources :