The module of vector-valued modular forms is Cohen-Macaulay
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1211-1218
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $H$ denote a finite index subgroup of the modular group $\Gamma $ and let $\rho $ denote a finite-dimensional complex representation of $H.$ Let $M(\rho )$ denote the collection of holomorphic vector-valued modular forms for $\rho $ and let $M(H)$ denote the collection of modular forms on $H$. Then $M(\rho )$ is a $\mathbb {Z}$-graded $M(H)$-module. It has been proven that $M(\rho )$ may not be projective as a $M(H)$-module. We prove that $M(\rho )$ is Cohen-Macaulay as a $M(H)$-module. We also explain how to apply this result to prove that if $M(H)$ is a polynomial ring, then $M(\rho )$ is a free $M(H)$-module of rank $\dim \rho .$
Let $H$ denote a finite index subgroup of the modular group $\Gamma $ and let $\rho $ denote a finite-dimensional complex representation of $H.$ Let $M(\rho )$ denote the collection of holomorphic vector-valued modular forms for $\rho $ and let $M(H)$ denote the collection of modular forms on $H$. Then $M(\rho )$ is a $\mathbb {Z}$-graded $M(H)$-module. It has been proven that $M(\rho )$ may not be projective as a $M(H)$-module. We prove that $M(\rho )$ is Cohen-Macaulay as a $M(H)$-module. We also explain how to apply this result to prove that if $M(H)$ is a polynomial ring, then $M(\rho )$ is a free $M(H)$-module of rank $\dim \rho .$
DOI : 10.21136/CMJ.2020.0476-19
Classification : 11F03, 13C14
Keywords: vector-valued modular form; Cohen-Macaulay module
@article{10_21136_CMJ_2020_0476_19,
     author = {Gottesman, Richard},
     title = {The module of vector-valued modular forms is {Cohen-Macaulay}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1211--1218},
     year = {2020},
     volume = {70},
     number = {4},
     doi = {10.21136/CMJ.2020.0476-19},
     mrnumber = {4181810},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0476-19/}
}
TY  - JOUR
AU  - Gottesman, Richard
TI  - The module of vector-valued modular forms is Cohen-Macaulay
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 1211
EP  - 1218
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0476-19/
DO  - 10.21136/CMJ.2020.0476-19
LA  - en
ID  - 10_21136_CMJ_2020_0476_19
ER  - 
%0 Journal Article
%A Gottesman, Richard
%T The module of vector-valued modular forms is Cohen-Macaulay
%J Czechoslovak Mathematical Journal
%D 2020
%P 1211-1218
%V 70
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0476-19/
%R 10.21136/CMJ.2020.0476-19
%G en
%F 10_21136_CMJ_2020_0476_19
Gottesman, Richard. The module of vector-valued modular forms is Cohen-Macaulay. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1211-1218. doi: 10.21136/CMJ.2020.0476-19

[1] Bannai, E., Koike, M., Munemasa, A., Sekiguchi, J.: Some results on modular forms-subgroups of the modular group whose ring of modular forms is a polynomial ring. Groups and Combinatorics - In Memory of Michio Suzuki Advanced Studies in Pure Mathematics 32. Mathematical Society Japan, Tokyo (2001), 245-254. | DOI | MR | JFM

[2] Benson, D. J.: Polynomial Invariants of Finite Groups. London Mathematical Society Lecture Note Series 190. Cambridge University Press, Cambridge (1993). | DOI | MR | JFM

[3] Candelori, L., Franc, C.: Vector-valued modular forms and the modular orbifold of elliptic curves. Int. J. Number Theory 13 (2017), 39-63. | DOI | MR | JFM

[4] Candelori, L., Franc, C.: Vector bundles and modular forms for Fuchsian groups of genus zero. Commun. Number Theory Phys. 13 (2019), 487-528. | DOI | MR | JFM

[5] Franc, C., Mason, G.: Fourier coefficients of vector-valued modular forms of dimension 2. Can. Math. Bull. 57 (2014), 485-494. | DOI | MR | JFM

[6] Franc, C., Mason, G.: Hypergeometric series, modular linear differential equations and vector-valued modular forms. Ramanujan J. 41 (2016), 233-267. | DOI | MR | JFM

[7] Gannon, T.: The theory of vector-valued modular forms for the modular group. Conformal Field Theory, Automorphic Forms and Related Topics Contributions in Mathematical and Computational Sciences 8. Springer, Berlin (2014), 247-286. | DOI | MR | JFM

[8] Gottesman, R.: The arithmetic of vector-valued modular forms on $\Gamma_{0}(2)$. Int. J. Number Theory 16 (2020), 241-289. | DOI | MR | JFM

[9] Marks, C.: Fourier coefficients of three-dimensional vector-valued modular forms. Commun. Number Theory Phys. 9 (2015), 387-411. | DOI | MR | JFM

[10] Marks, C., Mason, G.: Structure of the module of vector-valued modular forms. J. Lond. Math. Soc., II. Ser. 82 (2010), 32-48. | DOI | MR | JFM

[11] Mason, G.: On the Fourier coefficients of 2-dimensional vector-valued modular forms. Proc. Am. Math. Soc. 140 (2012), 1921-1930. | DOI | MR | JFM

[12] Selberg, A.: On the estimation of Fourier coefficients of modular forms. Proc. Sympos. Pure Math. 8 American Mathematical Society, Providence (1965), 1-15. | MR | JFM

Cité par Sources :