On the binary system of factors of formal matrix rings
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 693-709
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate the formal matrix ring over $R$ defined by a certain system of factors. We give a method for constructing formal matrix rings from non-negative integer matrices. We also show that the principal factor matrix of a binary system of factors determine the structure of the system.
We investigate the formal matrix ring over $R$ defined by a certain system of factors. We give a method for constructing formal matrix rings from non-negative integer matrices. We also show that the principal factor matrix of a binary system of factors determine the structure of the system.
DOI : 10.21136/CMJ.2020.0464-18
Classification : 15B99, 16S50
Keywords: formal matrix ring; bimodule; system of factors; Wedderburn-Artin theorem
@article{10_21136_CMJ_2020_0464_18,
     author = {Chen, Weining and Deng, Guixin and Su, Huadong},
     title = {On the binary system of factors of formal matrix rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {693--709},
     year = {2020},
     volume = {70},
     number = {3},
     doi = {10.21136/CMJ.2020.0464-18},
     mrnumber = {4151699},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0464-18/}
}
TY  - JOUR
AU  - Chen, Weining
AU  - Deng, Guixin
AU  - Su, Huadong
TI  - On the binary system of factors of formal matrix rings
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 693
EP  - 709
VL  - 70
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0464-18/
DO  - 10.21136/CMJ.2020.0464-18
LA  - en
ID  - 10_21136_CMJ_2020_0464_18
ER  - 
%0 Journal Article
%A Chen, Weining
%A Deng, Guixin
%A Su, Huadong
%T On the binary system of factors of formal matrix rings
%J Czechoslovak Mathematical Journal
%D 2020
%P 693-709
%V 70
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0464-18/
%R 10.21136/CMJ.2020.0464-18
%G en
%F 10_21136_CMJ_2020_0464_18
Chen, Weining; Deng, Guixin; Su, Huadong. On the binary system of factors of formal matrix rings. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 693-709. doi: 10.21136/CMJ.2020.0464-18

[1] Abyzov, A. N., Tapkin, D. T.: Formal matrix rings and their isomorphisms. Sib. Math. J. 56 (2015), 955-967 translated from Sib. Mat. Zh. 56 2015 1199-1214. | DOI | MR | JFM

[2] Abyzov, A. N., Tapkin, D. T.: On certain classes of rings of formal matrices. Russ. Math. 59 (2015), 1-12 translated from Izv. Vyssh. Uchebn. Zaved., Mat. 2015 2015 3-14. | DOI | MR | JFM

[3] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras. Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). | DOI | MR | JFM

[4] Varadarajan, A. Haghany K.: Study of formal triangular matrix rings. Commun. Algebra 27 (1999), 5507-5525. | DOI | MR | JFM

[5] Varadarajan, A. Haghany K.: Study of modules over formal triangular matrix rings. J. Pure Appl. Algebra 147 (2000), 41-58. | DOI | MR | JFM

[6] Krylov, P. A.: Isomorphism of generalized matrix rings. Algebra Logic 47 (2008), 258-262 translated from Algebra Logika 47 2008 456-463. | DOI | MR | JFM

[7] Krylov, P. A.: Injective modules over formal matrix rings. Sib. Math. J. 51 (2010), 72-77 translated from Sib. Mat. Zh. 51 2010 90-97. | DOI | MR | JFM

[8] Krylov, P. A., Tuganbaev, A. A.: Modules over formal matrix rings. J. Math. Sci., New York 171 (2010), 248-295 translated from Fundam. Prikl. Mat. 15 2009 145-211. | DOI | MR | JFM

[9] Krylov, P. A., Tuganbaev, A. A.: Formal matrices and their determinants. J. Math. Sci., New York 211 (2015), 341-380 translated from Fundam. Prikl. Mat. 19 2014 65-119. | DOI | MR | JFM

[10] Lam, T. Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics 189. Springer, New York (1999). | DOI | MR | JFM

[11] Morita, K.: Duality for modules and its applications to the theory of rings with minimum conditions. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A 6 (1958), 83-142. | MR | JFM

[12] Müller, M.: Rings of quotients of generalized matrix rings. Commun. Algebra 15 (1987), 1991-2015. | DOI | MR | JFM

[13] Nicholson, W. K., Watters, J. F.: Classes of simple modules and triangular rings. Commun. Algebra 20 (1992), 141-153. | DOI | MR | JFM

[14] Tang, G., Li, C., Zhou, Y.: Study of Morita contexts. Commun. Algebra 42 (2014), 1668-1681. | DOI | MR | JFM

[15] Tang, G., Zhou, Y.: Strong cleanness of generalized matrix rings over a local ring. Linear Algebra Appl. 437 (2012), 2546-2559. | DOI | MR | JFM

[16] Tang, G., Zhou, Y.: A class of formal matrix rings. Linear Algebra Appl. 438 (2013), 4672-4688. | DOI | MR | JFM

Cité par Sources :