Chebyshev polynomials and Pell equations over finite fields
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 491-510
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We shall describe how to construct a fundamental solution for the Pell equation $x^2-my^2=1$ over finite fields of characteristic $p\neq 2$. Especially, a complete description of the structure of these fundamental solutions will be given using Chebyshev polynomials. Furthermore, we shall describe the structure of the solutions of the general Pell equation $x^2-my^2=n$.
We shall describe how to construct a fundamental solution for the Pell equation $x^2-my^2=1$ over finite fields of characteristic $p\neq 2$. Especially, a complete description of the structure of these fundamental solutions will be given using Chebyshev polynomials. Furthermore, we shall describe the structure of the solutions of the general Pell equation $x^2-my^2=n$.
DOI :
10.21136/CMJ.2020.0451-19
Classification :
11D09, 11D79, 11T99, 12E10, 12E20
Keywords: finite field; Chebyshev polynomial; Pell equation
Keywords: finite field; Chebyshev polynomial; Pell equation
@article{10_21136_CMJ_2020_0451_19,
author = {Cohen, Boaz},
title = {Chebyshev polynomials and {Pell} equations over finite fields},
journal = {Czechoslovak Mathematical Journal},
pages = {491--510},
year = {2021},
volume = {71},
number = {2},
doi = {10.21136/CMJ.2020.0451-19},
mrnumber = {4263182},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0451-19/}
}
TY - JOUR AU - Cohen, Boaz TI - Chebyshev polynomials and Pell equations over finite fields JO - Czechoslovak Mathematical Journal PY - 2021 SP - 491 EP - 510 VL - 71 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0451-19/ DO - 10.21136/CMJ.2020.0451-19 LA - en ID - 10_21136_CMJ_2020_0451_19 ER -
Cohen, Boaz. Chebyshev polynomials and Pell equations over finite fields. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 491-510. doi: 10.21136/CMJ.2020.0451-19
[1] Benjamin, A. T., Walton, D.: Counting on Chebyshev polynomials. Math. Mag. 82 (2009), 117-126. | DOI | MR | JFM
[2] Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory. Graduate Texts in Mathematics 84. Springer, New York (1990). | DOI | MR | JFM
[3] LeVeque, W. J.: Topics in Number Theory. Vol I. Dover Publications, Mineola (2002). | MR | JFM
Cité par Sources :