A solvability criterion for finite groups related to character degrees
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1205-1209
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $m>1$ be a fixed positive integer. In this paper, we consider finite groups each of whose nonlinear character degrees has exactly $m$ prime divisors. We show that such groups are solvable whenever $m>2$. Moreover, we prove that if $G$ is a non-solvable group with this property, then $m=2$ and $G$ is an extension of ${\rm A}_7$ or ${\rm S}_7$ by a solvable group.
Let $m>1$ be a fixed positive integer. In this paper, we consider finite groups each of whose nonlinear character degrees has exactly $m$ prime divisors. We show that such groups are solvable whenever $m>2$. Moreover, we prove that if $G$ is a non-solvable group with this property, then $m=2$ and $G$ is an extension of ${\rm A}_7$ or ${\rm S}_7$ by a solvable group.
DOI : 10.21136/CMJ.2020.0440-19
Classification : 20C15, 20D10
Keywords: non-solvable group; solvable group; character degree
@article{10_21136_CMJ_2020_0440_19,
     author = {Miraali, Babak and Robati, Sajjad Mahmood},
     title = {A solvability criterion for finite groups related to character degrees},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1205--1209},
     year = {2020},
     volume = {70},
     number = {4},
     doi = {10.21136/CMJ.2020.0440-19},
     mrnumber = {4181809},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0440-19/}
}
TY  - JOUR
AU  - Miraali, Babak
AU  - Robati, Sajjad Mahmood
TI  - A solvability criterion for finite groups related to character degrees
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 1205
EP  - 1209
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0440-19/
DO  - 10.21136/CMJ.2020.0440-19
LA  - en
ID  - 10_21136_CMJ_2020_0440_19
ER  - 
%0 Journal Article
%A Miraali, Babak
%A Robati, Sajjad Mahmood
%T A solvability criterion for finite groups related to character degrees
%J Czechoslovak Mathematical Journal
%D 2020
%P 1205-1209
%V 70
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0440-19/
%R 10.21136/CMJ.2020.0440-19
%G en
%F 10_21136_CMJ_2020_0440_19
Miraali, Babak; Robati, Sajjad Mahmood. A solvability criterion for finite groups related to character degrees. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1205-1209. doi: 10.21136/CMJ.2020.0440-19

[1] Benjamin, D.: Coprimeness among irreducible character degrees of finite solvable groups. Proc. Am. Math. Soc. 125 (1997), 2831-2837. | DOI | MR | JFM

[2] Bianchi, M., Chillag, D., Lewis, M. L., Pacifici, E.: Character degree graphs that are complete graphs. Proc. Am. Math. Soc. 135 (2007), 671-676. | DOI | MR | JFM

[3] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Clarendon Press, Oxford (1985). | MR | JFM

[4] Group, GAP: GAP -- Groups, Algorithms, and Programming. A System for Computational Discrete Algebra. Version 4.7.4. Available at http://www.gap-system.org (2014).

[5] Isaacs, I. M.: Character Theory of Finite Groups. Pure and Applied Mathematics 69. Academic Press, New York (1976). | DOI | MR | JFM

[6] Isaacs, I. M., Passman, D. S.: A characterization of groups in terms of the degrees of their characters II. Pac. J. Math. 24 (1968), 467-510. | DOI | MR | JFM

[7] James, G., Kerber, A.: The Representation Theory of the Symmetric Group. Encyclopedia of Mathematics and Its Applications 16. Addison-Wesley, Reading (1981). | DOI | MR | JFM

[8] Manz, O.: Endliche auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind. J. Algebra 94 (1985), 211-255 German. | DOI | MR | JFM

[9] Manz, O.: Endliche nicht-auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind. J. Algebra 96 (1985), 114-119 German. | DOI | MR | JFM

[10] Schmid, P.: Extending the Steinberg representation. J. Algebra 150 (1992), 254-256. | DOI | MR | JFM

Cité par Sources :