Keywords: integral operator; Siegel upper half-space; weighted $L^p$ space; boundedness
@article{10_21136_CMJ_2020_0436_19,
author = {Wang, Xin and Liu, Ming-Sheng},
title = {The boundedness of two classes of integral operators},
journal = {Czechoslovak Mathematical Journal},
pages = {475--490},
year = {2021},
volume = {71},
number = {2},
doi = {10.21136/CMJ.2020.0436-19},
mrnumber = {4263181},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0436-19/}
}
TY - JOUR AU - Wang, Xin AU - Liu, Ming-Sheng TI - The boundedness of two classes of integral operators JO - Czechoslovak Mathematical Journal PY - 2021 SP - 475 EP - 490 VL - 71 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0436-19/ DO - 10.21136/CMJ.2020.0436-19 LA - en ID - 10_21136_CMJ_2020_0436_19 ER -
%0 Journal Article %A Wang, Xin %A Liu, Ming-Sheng %T The boundedness of two classes of integral operators %J Czechoslovak Mathematical Journal %D 2021 %P 475-490 %V 71 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0436-19/ %R 10.21136/CMJ.2020.0436-19 %G en %F 10_21136_CMJ_2020_0436_19
Wang, Xin; Liu, Ming-Sheng. The boundedness of two classes of integral operators. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 475-490. doi: 10.21136/CMJ.2020.0436-19
[1] Furdui, O.: The Fock Space and Related Bergman Type Integral Operators: PhD. Thesis. Western Michigan University, Kalamazoo (2007). | MR
[2] Furdui, O.: On a class of integral operators. Integral Equations Oper. Theory 60 (2008), 469-483. | DOI | MR | JFM
[3] Kures, O., Zhu, K.: A class of integral operators on the unit ball of $\mathbb{C}^n$. Integral Equations Oper. Theory 56 (2006), 71-82. | DOI | MR | JFM
[4] Liu, C., Liu, Y., Hu, P., Zhou, L.: Two classes of integral operators over the Siegel upper half-space. Complex Anal. Oper. Theory 13 (2019), 685-701. | DOI | MR | JFM
[5] Liu, M.-S.: Biholomorphic convex mappings of order $\alpha$ on $B_p^n$. Complex Var. Elliptic Equ. 58 (2013), 899-908. | DOI | MR | JFM
[6] Liu, M.-S., Li, N., Yang, Y.: On the biholomorphic convex mappings of order alpha on $D_p^n$. Complex Anal. Oper. Theory 11 (2017), 243-260. | DOI | MR | JFM
[7] Liu, M.-S., Tang, X.-M.: Sufficient conditions for $\varepsilon$ quasi-convex mappings in a complex Banach space. Complex Var. Elliptic Equ. 58 (2013), 1273-1282. | DOI | MR | JFM
[8] Liu, M.-S., Wu, F.: Sharp inequalities of homogeneous expansions of almost starlike mappings of order alpha. Bull. Malays. Math. Sci. Soc. (2) 42 (2019), 133-151. | DOI | MR | JFM
[9] Liu, M.-S., Wu, F., Yang, Y.: Sharp estimates of quasi-convex mappings of type B and order $\alpha$. Acta Math. Sci., Ser. B, Engl. Ed. 39 (2019), 1265-1276. | DOI | MR
[10] Zhao, R.: Generalization of Schur's test and its application to a class of integral operators on the unit ball of $\mathbb{C}^n$. Integral Equations Oper. Theory 82 (2015), 519-532. | DOI | MR | JFM
[11] Zhou, L.: On the boundedness and the norm of a class of integral operators. Acta Math. Sci., Ser. B, Engl. Ed. 35 (2015), 1475-1482. | DOI | MR | JFM
[12] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226. Springer, New York (2005). | DOI | MR | JFM
Cité par Sources :