The boundedness of two classes of integral operators
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 475-490.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The aim of this paper is to characterize the $L^p-L^q$ boundedness of two classes of integral operators from $L^p (\mathcal {U}, {\rm d} V_\alpha )$ to $L^q(\mathcal {U}, {\rm d} V_\beta )$ in terms of the parameters $a$, $b$, $c$, $p$, $q$ and $\alpha $, $\beta $, where $\mathcal {U}$ is the Siegel upper half-space. The results in the presented paper generalize a corresponding result given in C. Liu, Y. Liu, P. Hu, L. Zhou (2019).
DOI : 10.21136/CMJ.2020.0436-19
Classification : 47B38, 47G10
Keywords: integral operator; Siegel upper half-space; weighted $L^p$ space; boundedness
@article{10_21136_CMJ_2020_0436_19,
     author = {Wang, Xin and Liu, Ming-Sheng},
     title = {The boundedness of two classes  of integral operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {475--490},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2021},
     doi = {10.21136/CMJ.2020.0436-19},
     mrnumber = {4263181},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0436-19/}
}
TY  - JOUR
AU  - Wang, Xin
AU  - Liu, Ming-Sheng
TI  - The boundedness of two classes  of integral operators
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 475
EP  - 490
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0436-19/
DO  - 10.21136/CMJ.2020.0436-19
LA  - en
ID  - 10_21136_CMJ_2020_0436_19
ER  - 
%0 Journal Article
%A Wang, Xin
%A Liu, Ming-Sheng
%T The boundedness of two classes  of integral operators
%J Czechoslovak Mathematical Journal
%D 2021
%P 475-490
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0436-19/
%R 10.21136/CMJ.2020.0436-19
%G en
%F 10_21136_CMJ_2020_0436_19
Wang, Xin; Liu, Ming-Sheng. The boundedness of two classes  of integral operators. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 475-490. doi : 10.21136/CMJ.2020.0436-19. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0436-19/

Cité par Sources :