The boundedness of two classes of integral operators
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 475-490
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The aim of this paper is to characterize the $L^p-L^q$ boundedness of two classes of integral operators from $L^p (\mathcal {U}, {\rm d} V_\alpha )$ to $L^q(\mathcal {U}, {\rm d} V_\beta )$ in terms of the parameters $a$, $b$, $c$, $p$, $q$ and $\alpha $, $\beta $, where $\mathcal {U}$ is the Siegel upper half-space. The results in the presented paper generalize a corresponding result given in C. Liu, Y. Liu, P. Hu, L. Zhou (2019).
DOI :
10.21136/CMJ.2020.0436-19
Classification :
47B38, 47G10
Keywords: integral operator; Siegel upper half-space; weighted $L^p$ space; boundedness
Keywords: integral operator; Siegel upper half-space; weighted $L^p$ space; boundedness
@article{10_21136_CMJ_2020_0436_19,
author = {Wang, Xin and Liu, Ming-Sheng},
title = {The boundedness of two classes of integral operators},
journal = {Czechoslovak Mathematical Journal},
pages = {475--490},
publisher = {mathdoc},
volume = {71},
number = {2},
year = {2021},
doi = {10.21136/CMJ.2020.0436-19},
mrnumber = {4263181},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0436-19/}
}
TY - JOUR AU - Wang, Xin AU - Liu, Ming-Sheng TI - The boundedness of two classes of integral operators JO - Czechoslovak Mathematical Journal PY - 2021 SP - 475 EP - 490 VL - 71 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0436-19/ DO - 10.21136/CMJ.2020.0436-19 LA - en ID - 10_21136_CMJ_2020_0436_19 ER -
%0 Journal Article %A Wang, Xin %A Liu, Ming-Sheng %T The boundedness of two classes of integral operators %J Czechoslovak Mathematical Journal %D 2021 %P 475-490 %V 71 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0436-19/ %R 10.21136/CMJ.2020.0436-19 %G en %F 10_21136_CMJ_2020_0436_19
Wang, Xin; Liu, Ming-Sheng. The boundedness of two classes of integral operators. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 475-490. doi: 10.21136/CMJ.2020.0436-19
Cité par Sources :