The boundedness of two classes of integral operators
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 475-490 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of this paper is to characterize the $L^p-L^q$ boundedness of two classes of integral operators from $L^p (\mathcal {U}, {\rm d} V_\alpha )$ to $L^q(\mathcal {U}, {\rm d} V_\beta )$ in terms of the parameters $a$, $b$, $c$, $p$, $q$ and $\alpha $, $\beta $, where $\mathcal {U}$ is the Siegel upper half-space. The results in the presented paper generalize a corresponding result given in C. Liu, Y. Liu, P. Hu, L. Zhou (2019).
The aim of this paper is to characterize the $L^p-L^q$ boundedness of two classes of integral operators from $L^p (\mathcal {U}, {\rm d} V_\alpha )$ to $L^q(\mathcal {U}, {\rm d} V_\beta )$ in terms of the parameters $a$, $b$, $c$, $p$, $q$ and $\alpha $, $\beta $, where $\mathcal {U}$ is the Siegel upper half-space. The results in the presented paper generalize a corresponding result given in C. Liu, Y. Liu, P. Hu, L. Zhou (2019).
DOI : 10.21136/CMJ.2020.0436-19
Classification : 47B38, 47G10
Keywords: integral operator; Siegel upper half-space; weighted $L^p$ space; boundedness
@article{10_21136_CMJ_2020_0436_19,
     author = {Wang, Xin and Liu, Ming-Sheng},
     title = {The boundedness of two classes  of integral operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {475--490},
     year = {2021},
     volume = {71},
     number = {2},
     doi = {10.21136/CMJ.2020.0436-19},
     mrnumber = {4263181},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0436-19/}
}
TY  - JOUR
AU  - Wang, Xin
AU  - Liu, Ming-Sheng
TI  - The boundedness of two classes  of integral operators
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 475
EP  - 490
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0436-19/
DO  - 10.21136/CMJ.2020.0436-19
LA  - en
ID  - 10_21136_CMJ_2020_0436_19
ER  - 
%0 Journal Article
%A Wang, Xin
%A Liu, Ming-Sheng
%T The boundedness of two classes  of integral operators
%J Czechoslovak Mathematical Journal
%D 2021
%P 475-490
%V 71
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0436-19/
%R 10.21136/CMJ.2020.0436-19
%G en
%F 10_21136_CMJ_2020_0436_19
Wang, Xin; Liu, Ming-Sheng. The boundedness of two classes  of integral operators. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 475-490. doi: 10.21136/CMJ.2020.0436-19

[1] Furdui, O.: The Fock Space and Related Bergman Type Integral Operators: PhD. Thesis. Western Michigan University, Kalamazoo (2007). | MR

[2] Furdui, O.: On a class of integral operators. Integral Equations Oper. Theory 60 (2008), 469-483. | DOI | MR | JFM

[3] Kures, O., Zhu, K.: A class of integral operators on the unit ball of $\mathbb{C}^n$. Integral Equations Oper. Theory 56 (2006), 71-82. | DOI | MR | JFM

[4] Liu, C., Liu, Y., Hu, P., Zhou, L.: Two classes of integral operators over the Siegel upper half-space. Complex Anal. Oper. Theory 13 (2019), 685-701. | DOI | MR | JFM

[5] Liu, M.-S.: Biholomorphic convex mappings of order $\alpha$ on $B_p^n$. Complex Var. Elliptic Equ. 58 (2013), 899-908. | DOI | MR | JFM

[6] Liu, M.-S., Li, N., Yang, Y.: On the biholomorphic convex mappings of order alpha on $D_p^n$. Complex Anal. Oper. Theory 11 (2017), 243-260. | DOI | MR | JFM

[7] Liu, M.-S., Tang, X.-M.: Sufficient conditions for $\varepsilon$ quasi-convex mappings in a complex Banach space. Complex Var. Elliptic Equ. 58 (2013), 1273-1282. | DOI | MR | JFM

[8] Liu, M.-S., Wu, F.: Sharp inequalities of homogeneous expansions of almost starlike mappings of order alpha. Bull. Malays. Math. Sci. Soc. (2) 42 (2019), 133-151. | DOI | MR | JFM

[9] Liu, M.-S., Wu, F., Yang, Y.: Sharp estimates of quasi-convex mappings of type B and order $\alpha$. Acta Math. Sci., Ser. B, Engl. Ed. 39 (2019), 1265-1276. | DOI | MR

[10] Zhao, R.: Generalization of Schur's test and its application to a class of integral operators on the unit ball of $\mathbb{C}^n$. Integral Equations Oper. Theory 82 (2015), 519-532. | DOI | MR | JFM

[11] Zhou, L.: On the boundedness and the norm of a class of integral operators. Acta Math. Sci., Ser. B, Engl. Ed. 35 (2015), 1475-1482. | DOI | MR | JFM

[12] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226. Springer, New York (2005). | DOI | MR | JFM

Cité par Sources :