Constructing modular forms from harmonic Maass Jacobi forms
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 455-473 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We construct a family of modular forms from harmonic Maass Jacobi forms by considering their Taylor expansion and using the method of holomorphic projection. As an application we present a certain type Hurwitz class relations which can be viewed as a generalization of Mertens' result in M. H. Mertens (2016).
We construct a family of modular forms from harmonic Maass Jacobi forms by considering their Taylor expansion and using the method of holomorphic projection. As an application we present a certain type Hurwitz class relations which can be viewed as a generalization of Mertens' result in M. H. Mertens (2016).
DOI : 10.21136/CMJ.2020.0427-19
Classification : 11F30, 11F37, 11F50
Keywords: modular form; harmonic Maass Jacobi form; holomorphic projection; Hurwitz class number
@article{10_21136_CMJ_2020_0427_19,
     author = {Xiong, Ran and Zhou, Haigang},
     title = {Constructing modular forms from harmonic {Maass} {Jacobi} forms},
     journal = {Czechoslovak Mathematical Journal},
     pages = {455--473},
     year = {2021},
     volume = {71},
     number = {2},
     doi = {10.21136/CMJ.2020.0427-19},
     mrnumber = {4263180},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0427-19/}
}
TY  - JOUR
AU  - Xiong, Ran
AU  - Zhou, Haigang
TI  - Constructing modular forms from harmonic Maass Jacobi forms
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 455
EP  - 473
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0427-19/
DO  - 10.21136/CMJ.2020.0427-19
LA  - en
ID  - 10_21136_CMJ_2020_0427_19
ER  - 
%0 Journal Article
%A Xiong, Ran
%A Zhou, Haigang
%T Constructing modular forms from harmonic Maass Jacobi forms
%J Czechoslovak Mathematical Journal
%D 2021
%P 455-473
%V 71
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0427-19/
%R 10.21136/CMJ.2020.0427-19
%G en
%F 10_21136_CMJ_2020_0427_19
Xiong, Ran; Zhou, Haigang. Constructing modular forms from harmonic Maass Jacobi forms. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 455-473. doi: 10.21136/CMJ.2020.0427-19

[1] Bringmann, K., Folsom, A., Ono, K., Rolen, L.: Harmonic Maass Forms and Mock Modular Forms: Theory and Applications. American Mathematical Society Colloquium Publications 64. American Mathematical Society, Providence (2017). | DOI | MR | JFM

[2] Bringmann, K., Richter, O. K.: Zagier-type dualities and lifting maps for harmonic Maass-Jacobi forms. Adv. Math. 225 (2010), 2298-2315. | DOI | MR | JFM

[3] Choie, Y.: Correspondence among Eisenstein series $E_{2,1}(\tau,z)$, $H_{\frac{3}{2}}(\tau)$ and $E_{2}(\tau)$. Manuscr. Math. 93 (1997), 177-187. | DOI | MR | JFM

[4] Cohen, H.: Sums involving the values at negative integers of $L$-functions of quadratic characters. Math. Ann. 217 (1975), 271-285. | DOI | MR | JFM

[5] Eichler, M., Zagier, D.: The Theory of Jacobi Forms. Progress in Mathematics 55. Birkhäuser, Boston (1985). | DOI | MR | JFM

[6] Gross, B. H., Zagier, D.: Heegner points and derivatives of $L$-series. Invent. Math. 84 (1986), 225-320. | DOI | MR | JFM

[7] Imamoğlu, Ö., Raum, M., Richter, O. K.: Holomorphic projections and Ramanujan's mock theta functions. Proc. Natl. Acad. Sci. USA 111 (2014), 3961-3967. | DOI | MR | JFM

[8] Mertens, M. H.: Mock Modular Forms and Class Numbers of Quadratic Forms: PhD Thesis. Universität zu Köln, Köln (2014), Available at \let \relax\brokenlink{ http://kups.ub.uni-koeln.de/id/{eprint/5686}} | MR

[9] Mertens, M. H.: Eichler-Selberg type identities for mixed mock modular forms. Adv. Math. 301 (2016), 359-382. | DOI | MR | JFM

[10] Sturm, J.: Projections of ${{\mathbb C}}^{\infty}$ automorphic forms. Bull. Am. Math. Soc., New Ser. 2 (1980), 435-439. | DOI | MR | JFM

Cité par Sources :