Coleman automorphisms of finite groups with a self-centralizing normal subgroup
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1197-1204
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $G$ be a finite group with a normal subgroup $N$ such that $C_{G}(N)\leq N$. It is shown that under some conditions, Coleman automorphisms of $G$ are inner. Interest in such automorphisms arose from the study of the normalizer problem for integral group rings.\looseness -1
Let $G$ be a finite group with a normal subgroup $N$ such that $C_{G}(N)\leq N$. It is shown that under some conditions, Coleman automorphisms of $G$ are inner. Interest in such automorphisms arose from the study of the normalizer problem for integral group rings.\looseness -1
DOI : 10.21136/CMJ.2020.0423-19
Classification : 16S34, 20C05, 20C10
Keywords: Coleman automorphism; integral group ring; the normalizer property
@article{10_21136_CMJ_2020_0423_19,
     author = {Hai, Jinke},
     title = {Coleman automorphisms of finite groups with a self-centralizing normal subgroup},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1197--1204},
     year = {2020},
     volume = {70},
     number = {4},
     doi = {10.21136/CMJ.2020.0423-19},
     mrnumber = {4181808},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0423-19/}
}
TY  - JOUR
AU  - Hai, Jinke
TI  - Coleman automorphisms of finite groups with a self-centralizing normal subgroup
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 1197
EP  - 1204
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0423-19/
DO  - 10.21136/CMJ.2020.0423-19
LA  - en
ID  - 10_21136_CMJ_2020_0423_19
ER  - 
%0 Journal Article
%A Hai, Jinke
%T Coleman automorphisms of finite groups with a self-centralizing normal subgroup
%J Czechoslovak Mathematical Journal
%D 2020
%P 1197-1204
%V 70
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0423-19/
%R 10.21136/CMJ.2020.0423-19
%G en
%F 10_21136_CMJ_2020_0423_19
Hai, Jinke. Coleman automorphisms of finite groups with a self-centralizing normal subgroup. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1197-1204. doi: 10.21136/CMJ.2020.0423-19

[1] Coleman, D. B.: On the modular group ring of a $p$-group. Proc. Am. Math. Soc. 15 (1964), 511-514. | DOI | MR | JFM

[2] Hai, J., Ge, S., He, W.: The normalizer property for integral group rings of holomorphs of finite nilpotent groups and the symmetric groups. J. Algebra Appl. 16 (2017), Article ID 1750025, 11 pages. | DOI | MR | JFM

[3] Hai, J., Guo, J.: The normalizer property for integral group ring of the wreath product of two symmetric groups $S_k$ and $S_n$. Commun. Algebra 45 (2017), 1278-1283. | DOI | MR | JFM

[4] Hai, J., Li, Z.: On class-preserving Coleman automorphisms of finite separable groups. J. Algebra Appl. 13 (2014), Article ID 1350110, 8 pages. | DOI | MR | JFM

[5] Hertweck, M.: A counterexample to the isomorphism problem for integral group rings. Ann. Math. (2) 154 (2001), 115-138. | DOI | MR | JFM

[6] Hertweck, M.: Local analysis of the normalizer problem. J. Pure Appl. Algebra 163 (2001), 259-276. | DOI | MR | JFM

[7] Hertweck, M., Jespers, E.: Class-preserving automorphisms and the normalizer property for Blackburn groups. J. Group Theory 12 (2009), 157-169. | DOI | MR | JFM

[8] Hertweck, M., Kimmerle, W.: Coleman automorphisms of finite groups. Math. Z. 242 (2002), 203-215. | DOI | MR | JFM

[9] Huppert, B.: Endliche Gruppen I. Grundlehren der mathematischen Wissenschaften 134. Springer, Berlin (1967), German. | DOI | MR | JFM

[10] Jackowski, S., Marciniak, Z.: Group automorphisms inducing the identity map on cohomology. J. Pure Appl. Algebra 44 (1987), 241-250. | DOI | MR | JFM

[11] Jespers, E., Juriaans, S. O., Miranda, J. M. de, Rogerio, J. R.: On the normalizer problem. J. Algebra 247 (2002), 24-36. | DOI | MR | JFM

[12] Juriaans, S. O., Miranda, J. M. de, Robério, J. R.: Automorphisms of finite groups. Commun. Algebra 32 (2004), 1705-1714. | DOI | MR | JFM

[13] Li, Y.: The normalizer of a metabelian group in its integral group ring. J. Algebra 256 (2002), 343-351. | DOI | MR | JFM

[14] Marciniak, Z. S., Roggenkamp, K. W.: The normalizer of a finite group in its integral group ring and Čech cohomology. Algebra - Representation Theory NATO Sci. Ser. II Math. Phys. Chem. 28. Kluwer Academic, Dordrecht (2001), 159-188. | DOI | MR | JFM

[15] Lobão, T. Petit, Milies, C. Polcino: The normalizer property for integral group rings of Frobenius groups. J. Algebra 256 (2002), 1-6. | DOI | MR | JFM

[16] Lobão, T. Petit, Sehgal, S. K.: The normalizer property for integral group rings of complete monomial groups. Commun. Algebra 31 (2003), 2971-2983. | DOI | MR | JFM

[17] Rose, J. S.: A Course on Group Theory. Cambridge University Press, Cambridge (1978). | MR | JFM

[18] Sehgal, S. K.: Units in Integral Group Rings. Pitman Monographs and Surveys in Pure and Applied Mathematics 69. Longman Scientific & Technical, Harlow (1993). | MR | JFM

[19] Antwerpen, A. Van: Coleman automorphisms of finite groups and their minimal normal subgroups. J. Pure Appl. Algebra 222 (2018), 3379-3394. | DOI | MR | JFM

Cité par Sources :