Keywords: Coleman automorphism; integral group ring; the normalizer property
@article{10_21136_CMJ_2020_0423_19,
author = {Hai, Jinke},
title = {Coleman automorphisms of finite groups with a self-centralizing normal subgroup},
journal = {Czechoslovak Mathematical Journal},
pages = {1197--1204},
year = {2020},
volume = {70},
number = {4},
doi = {10.21136/CMJ.2020.0423-19},
mrnumber = {4181808},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0423-19/}
}
TY - JOUR AU - Hai, Jinke TI - Coleman automorphisms of finite groups with a self-centralizing normal subgroup JO - Czechoslovak Mathematical Journal PY - 2020 SP - 1197 EP - 1204 VL - 70 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0423-19/ DO - 10.21136/CMJ.2020.0423-19 LA - en ID - 10_21136_CMJ_2020_0423_19 ER -
%0 Journal Article %A Hai, Jinke %T Coleman automorphisms of finite groups with a self-centralizing normal subgroup %J Czechoslovak Mathematical Journal %D 2020 %P 1197-1204 %V 70 %N 4 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0423-19/ %R 10.21136/CMJ.2020.0423-19 %G en %F 10_21136_CMJ_2020_0423_19
Hai, Jinke. Coleman automorphisms of finite groups with a self-centralizing normal subgroup. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1197-1204. doi: 10.21136/CMJ.2020.0423-19
[1] Coleman, D. B.: On the modular group ring of a $p$-group. Proc. Am. Math. Soc. 15 (1964), 511-514. | DOI | MR | JFM
[2] Hai, J., Ge, S., He, W.: The normalizer property for integral group rings of holomorphs of finite nilpotent groups and the symmetric groups. J. Algebra Appl. 16 (2017), Article ID 1750025, 11 pages. | DOI | MR | JFM
[3] Hai, J., Guo, J.: The normalizer property for integral group ring of the wreath product of two symmetric groups $S_k$ and $S_n$. Commun. Algebra 45 (2017), 1278-1283. | DOI | MR | JFM
[4] Hai, J., Li, Z.: On class-preserving Coleman automorphisms of finite separable groups. J. Algebra Appl. 13 (2014), Article ID 1350110, 8 pages. | DOI | MR | JFM
[5] Hertweck, M.: A counterexample to the isomorphism problem for integral group rings. Ann. Math. (2) 154 (2001), 115-138. | DOI | MR | JFM
[6] Hertweck, M.: Local analysis of the normalizer problem. J. Pure Appl. Algebra 163 (2001), 259-276. | DOI | MR | JFM
[7] Hertweck, M., Jespers, E.: Class-preserving automorphisms and the normalizer property for Blackburn groups. J. Group Theory 12 (2009), 157-169. | DOI | MR | JFM
[8] Hertweck, M., Kimmerle, W.: Coleman automorphisms of finite groups. Math. Z. 242 (2002), 203-215. | DOI | MR | JFM
[9] Huppert, B.: Endliche Gruppen I. Grundlehren der mathematischen Wissenschaften 134. Springer, Berlin (1967), German. | DOI | MR | JFM
[10] Jackowski, S., Marciniak, Z.: Group automorphisms inducing the identity map on cohomology. J. Pure Appl. Algebra 44 (1987), 241-250. | DOI | MR | JFM
[11] Jespers, E., Juriaans, S. O., Miranda, J. M. de, Rogerio, J. R.: On the normalizer problem. J. Algebra 247 (2002), 24-36. | DOI | MR | JFM
[12] Juriaans, S. O., Miranda, J. M. de, Robério, J. R.: Automorphisms of finite groups. Commun. Algebra 32 (2004), 1705-1714. | DOI | MR | JFM
[13] Li, Y.: The normalizer of a metabelian group in its integral group ring. J. Algebra 256 (2002), 343-351. | DOI | MR | JFM
[14] Marciniak, Z. S., Roggenkamp, K. W.: The normalizer of a finite group in its integral group ring and Čech cohomology. Algebra - Representation Theory NATO Sci. Ser. II Math. Phys. Chem. 28. Kluwer Academic, Dordrecht (2001), 159-188. | DOI | MR | JFM
[15] Lobão, T. Petit, Milies, C. Polcino: The normalizer property for integral group rings of Frobenius groups. J. Algebra 256 (2002), 1-6. | DOI | MR | JFM
[16] Lobão, T. Petit, Sehgal, S. K.: The normalizer property for integral group rings of complete monomial groups. Commun. Algebra 31 (2003), 2971-2983. | DOI | MR | JFM
[17] Rose, J. S.: A Course on Group Theory. Cambridge University Press, Cambridge (1978). | MR | JFM
[18] Sehgal, S. K.: Units in Integral Group Rings. Pitman Monographs and Surveys in Pure and Applied Mathematics 69. Longman Scientific & Technical, Harlow (1993). | MR | JFM
[19] Antwerpen, A. Van: Coleman automorphisms of finite groups and their minimal normal subgroups. J. Pure Appl. Algebra 222 (2018), 3379-3394. | DOI | MR | JFM
Cité par Sources :