Unbalanced unicyclic and bicyclic graphs with extremal spectral radius
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 417-433
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A signed graph $\Gamma $ is a graph whose edges are labeled by signs. If $\Gamma $ has $n$ vertices, its spectral radius is the number $\rho (\Gamma ) := \max \{ | \lambda _i(\Gamma ) | \colon 1 \leq i \leq n \}$, where $\lambda _1(\Gamma ) \geq \cdots \geq \lambda _n(\Gamma )$ are the eigenvalues of the signed adjacency matrix $A(\Gamma )$. Here we determine the signed graphs achieving the minimal or the maximal spectral radius in the classes $\frak U_n$ and $\frak B_n$ of unbalanced unicyclic graphs and unbalanced bicyclic graphs, respectively.
A signed graph $\Gamma $ is a graph whose edges are labeled by signs. If $\Gamma $ has $n$ vertices, its spectral radius is the number $\rho (\Gamma ) := \max \{ | \lambda _i(\Gamma ) | \colon 1 \leq i \leq n \}$, where $\lambda _1(\Gamma ) \geq \cdots \geq \lambda _n(\Gamma )$ are the eigenvalues of the signed adjacency matrix $A(\Gamma )$. Here we determine the signed graphs achieving the minimal or the maximal spectral radius in the classes $\frak U_n$ and $\frak B_n$ of unbalanced unicyclic graphs and unbalanced bicyclic graphs, respectively.
DOI : 10.21136/CMJ.2020.0403-19
Classification : 05C22, 05C50
Keywords: signed graph; spectral radius; bicyclic graph
@article{10_21136_CMJ_2020_0403_19,
     author = {Belardo, Francesco and Brunetti, Maurizio and Ciampella, Adriana},
     title = {Unbalanced unicyclic and bicyclic graphs with extremal spectral radius},
     journal = {Czechoslovak Mathematical Journal},
     pages = {417--433},
     year = {2021},
     volume = {71},
     number = {2},
     doi = {10.21136/CMJ.2020.0403-19},
     mrnumber = {4263178},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0403-19/}
}
TY  - JOUR
AU  - Belardo, Francesco
AU  - Brunetti, Maurizio
AU  - Ciampella, Adriana
TI  - Unbalanced unicyclic and bicyclic graphs with extremal spectral radius
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 417
EP  - 433
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0403-19/
DO  - 10.21136/CMJ.2020.0403-19
LA  - en
ID  - 10_21136_CMJ_2020_0403_19
ER  - 
%0 Journal Article
%A Belardo, Francesco
%A Brunetti, Maurizio
%A Ciampella, Adriana
%T Unbalanced unicyclic and bicyclic graphs with extremal spectral radius
%J Czechoslovak Mathematical Journal
%D 2021
%P 417-433
%V 71
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0403-19/
%R 10.21136/CMJ.2020.0403-19
%G en
%F 10_21136_CMJ_2020_0403_19
Belardo, Francesco; Brunetti, Maurizio; Ciampella, Adriana. Unbalanced unicyclic and bicyclic graphs with extremal spectral radius. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 417-433. doi: 10.21136/CMJ.2020.0403-19

[1] Akbari, S., Belardo, F., Dodongeh, E., Nematollahi, M. A.: Spectral characterizations of signed cycles. Linear Algebra Appl. 553 (2018), 307-327. | DOI | MR | JFM

[2] Akbari, S., Belardo, F., Heydari, F., Maghasedi, M., Souri, M.: On the largest eigenvalue of signed unicyclic graphs. Linear Algebra Appl. 581 (2019), 145-162. | DOI | MR | JFM

[3] Akbari, S., Haemers, W. H., Maimani, H. R., Majd, L. Parsaei: Signed graphs cospectral with the path. Linear Algebra Appl. 553 (2018), 104-116. | DOI | MR | JFM

[4] Belardo, F., Brunetti, M.: Connected signed graphs $L$-cospectral to signed $\infty$-graphs. Linear Multilinear Algebra 67 (2019), 2410-2426. | DOI | MR | JFM

[5] Belardo, F., Brunetti, M., Ciampella, A.: Signed bicyclic graphs minimizing the least Laplacian eigenvalue. Linear Algebra Appl. 557 (2018), 201-233. | DOI | MR | JFM

[6] Belardo, F., Cioabă, S., Koolen, J., Wang, J.: Open problems in the spectral theory of signed graphs. Art Discrete Appl. Math. 1 (2018), Article ID P2.10, 23 pages. | DOI | MR | JFM

[7] Belardo, F., Marzi, E. M. Li, Simić, S. K.: Some results on the index of unicyclic graphs. Linear Algebra Appl. 416 (2006), 1048-1059. | DOI | MR | JFM

[8] Brualdi, R. A., Solheid, E. S.: On the spectral radius of connected graphs. Publ. Inst. Math., Nouv. Sér. 39 (1986), 45-54. | MR | JFM

[9] Brunetti, M.: On the existence of non-golden signed graphs. Atti Accad. Peloritana Pericolanti, Cl. Sci. Fis. Mat. Nat. 96 (2018), Article A2, 10 pages. | DOI | MR

[10] Chang, A., Tian, F., Yu, A.: On the index of bicyclic graphs with perfect matchings. Discrete Math. 283 (2004), 51-59. | DOI | MR | JFM

[11] Cvetković, D., Rowlinson, P.: Spectra of unicyclic graphs. Graphs Comb. 3 (1987), 7-23. | DOI | MR | JFM

[12] Cvetković, D., Rowlinson, P., Simić, S.: Eigenspaces of Graphs. Encyclopedia of Mathematics and Its Applications 66. Cambridge University Press, Cambridge (1997). | DOI | MR | JFM

[13] Guo, S.-G.: The spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices. Linear Algebra Appl. 408 (2005), 78-85. | DOI | MR | JFM

[14] Guo, S.-G.: On the spectral radius of bicyclic graphs with $n$ vertices and diameter $d$. Linear Algebra Appl. 422 (2007), 119-132. | DOI | MR | JFM

[15] McKee, J., Smyth, C.: Integer symmetric matrices having all their eigenvalues in the interval $[-2, 2]$. J. Algebra 317 (2007), 260-290. | DOI | MR | JFM

[16] Simić, S. K.: On the largest eigenvalue of unicyclic graphs. Publ. Inst. Math., Nouv. Sér. 42 (1987), 13-19. | MR | JFM

[17] Simić, S. K.: On the largest eigenvalue of bicyclic graphs. Publ. Inst. Math., Nouv. Sér. 46 (1989), 1-6. | MR | JFM

[18] Stanić, Z.: Bounding the largest eigenvalue of signed graphs. Linear Algebra Appl. 573 (2019), 80-89. | DOI | MR | JFM

[19] Stevanović, D.: Spectral Radius of Graphs. Elsevier Academic Press, Amsterdam (2015). | DOI | JFM

[20] Yu, A., Tian, F.: On the spectral radius of bicyclic graphs. MATCH Commun. Math. Comput. Chem. 52 (2004), 91-101. | MR | JFM

[21] Zaslavsky, T.: Biased graphs. I: Bias, balance, and gains. J. Comb. Theory, Ser. B 47 (1989), 32-52. | DOI | MR | JFM

[22] Zaslavsky, T.: Matrices in the theory of signed simple graphs. Advances in Discrete Mathematics and Applications Ramanujan Mathematical Society Lecture Notes Series 13. Ramanujan Mathematical Society, Mysore (2010), 207-229. | MR | JFM

[23] Zaslavsky, T.: A mathematical bibliography of signed and gain graphs and allied areas. Electron. J. Comb., Dynamic Surveys 5 (1998), Article ID DS8, 127 pages. | DOI | MR | JFM

[24] Zaslavsky, T.: Glossary of signed and gain graphs and allied areas. Electron. J. Comb., Dynamic Survey 5 (1998), Article ID DS9, 41 pages. | DOI | MR | JFM

Cité par Sources :