Unbalanced unicyclic and bicyclic graphs with extremal spectral radius
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 417-433
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A signed graph $\Gamma $ is a graph whose edges are labeled by signs. If $\Gamma $ has $n$ vertices, its spectral radius is the number $\rho (\Gamma ) := \max \{ | \lambda _i(\Gamma ) | \colon 1 \leq i \leq n \}$, where $\lambda _1(\Gamma ) \geq \cdots \geq \lambda _n(\Gamma )$ are the eigenvalues of the signed adjacency matrix $A(\Gamma )$. Here we determine the signed graphs achieving the minimal or the maximal spectral radius in the classes $\frak U_n$ and $\frak B_n$ of unbalanced unicyclic graphs and unbalanced bicyclic graphs, respectively.
DOI :
10.21136/CMJ.2020.0403-19
Classification :
05C22, 05C50
Keywords: signed graph; spectral radius; bicyclic graph
Keywords: signed graph; spectral radius; bicyclic graph
@article{10_21136_CMJ_2020_0403_19,
author = {Belardo, Francesco and Brunetti, Maurizio and Ciampella, Adriana},
title = {Unbalanced unicyclic and bicyclic graphs with extremal spectral radius},
journal = {Czechoslovak Mathematical Journal},
pages = {417--433},
publisher = {mathdoc},
volume = {71},
number = {2},
year = {2021},
doi = {10.21136/CMJ.2020.0403-19},
mrnumber = {4263178},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0403-19/}
}
TY - JOUR AU - Belardo, Francesco AU - Brunetti, Maurizio AU - Ciampella, Adriana TI - Unbalanced unicyclic and bicyclic graphs with extremal spectral radius JO - Czechoslovak Mathematical Journal PY - 2021 SP - 417 EP - 433 VL - 71 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0403-19/ DO - 10.21136/CMJ.2020.0403-19 LA - en ID - 10_21136_CMJ_2020_0403_19 ER -
%0 Journal Article %A Belardo, Francesco %A Brunetti, Maurizio %A Ciampella, Adriana %T Unbalanced unicyclic and bicyclic graphs with extremal spectral radius %J Czechoslovak Mathematical Journal %D 2021 %P 417-433 %V 71 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0403-19/ %R 10.21136/CMJ.2020.0403-19 %G en %F 10_21136_CMJ_2020_0403_19
Belardo, Francesco; Brunetti, Maurizio; Ciampella, Adriana. Unbalanced unicyclic and bicyclic graphs with extremal spectral radius. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 417-433. doi: 10.21136/CMJ.2020.0403-19
Cité par Sources :