Gorenstein star modules and Gorenstein tilting modules
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 403-416
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce the notion of Gorenstein star modules and obtain some properties and a characterization of them. We mainly give the relationship between $n$-Gorenstein star modules and $n$-Gorenstein tilting modules, see L. Yan, W. Li, B. Ouyang (2016), and a new characterization of $n$-Gorenstein tilting modules.
We introduce the notion of Gorenstein star modules and obtain some properties and a characterization of them. We mainly give the relationship between $n$-Gorenstein star modules and $n$-Gorenstein tilting modules, see L. Yan, W. Li, B. Ouyang (2016), and a new characterization of $n$-Gorenstein tilting modules.
DOI : 10.21136/CMJ.2020.0395-19
Classification : 16D90, 18E40, 18G05, 18G15
Keywords: Gorenstein quasi-projective module; Gorenstein star module; Gorenstein tilting module
@article{10_21136_CMJ_2020_0395_19,
     author = {Zhang, Peiyu},
     title = {Gorenstein star modules and  {Gorenstein} tilting modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {403--416},
     year = {2021},
     volume = {71},
     number = {2},
     doi = {10.21136/CMJ.2020.0395-19},
     mrnumber = {4263177},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0395-19/}
}
TY  - JOUR
AU  - Zhang, Peiyu
TI  - Gorenstein star modules and  Gorenstein tilting modules
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 403
EP  - 416
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0395-19/
DO  - 10.21136/CMJ.2020.0395-19
LA  - en
ID  - 10_21136_CMJ_2020_0395_19
ER  - 
%0 Journal Article
%A Zhang, Peiyu
%T Gorenstein star modules and  Gorenstein tilting modules
%J Czechoslovak Mathematical Journal
%D 2021
%P 403-416
%V 71
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0395-19/
%R 10.21136/CMJ.2020.0395-19
%G en
%F 10_21136_CMJ_2020_0395_19
Zhang, Peiyu. Gorenstein star modules and  Gorenstein tilting modules. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 403-416. doi: 10.21136/CMJ.2020.0395-19

[1] Hügel, L. Angeleri, Coelho, F. U.: Infinitely generated tilting modules of finite projective dimension. Forum Math. 13 (2001), 239-250. | DOI | MR | JFM

[2] Auslander, M., Solberg, Ø.: Relative homology and representation theory I. Relative homology and homologically finite subcategories. Commun. Algebra 21 (1993), 2995-3031. | DOI | MR | JFM

[3] Bazzoni, S.: A characterization of $n$-cotilting and $n$-tilting modules. J. Algebra 273 (2004), 359-372. | DOI | MR | JFM

[4] Brenner, S., Butler, M. C. R.: Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors. Representation Theory II Lecture Notes in Mathematics 832. Springer, Berlin (1980), 103-169. | DOI | MR | JFM

[5] Colpi, R., Trlifaj, J.: Tilting modules and tilting torsion theories. J. Algebra 178 (1995), 614-634. | DOI | MR | JFM

[6] Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra. de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). | DOI | MR | JFM

[7] Happel, D., Ringel, C. M.: Tilted algebras. Trans. Am. Math. Soc. 274 (1982), 399-443. | DOI | MR | JFM

[8] Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra 189 (2004), 167-193. | DOI | MR | JFM

[9] Wei, J.: $n$-star modules and $n$-tilting modules. J. Algebra 283 (2005), 711-722. | DOI | MR | JFM

[10] Wei, J.: A note on relative tilting modules. J. Pure Appl. Algebra 214 (2010), 493-500. | DOI | MR | JFM

[11] Yan, L., Li, W., Ouyang, B.: Gorenstein cotilting and tilting modules. Commun. Algebra 44 (2016), 591-603. | DOI | MR | JFM

Cité par Sources :