Monotonicity of first eigenvalues along the Yamabe flow
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 387-401
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We construct some nondecreasing quantities associated to the first eigenvalue of $-\Delta _\phi +cR$ $(c\geq \frac 12(n-2)/(n-1))$ along the Yamabe flow, where $\Delta _\phi $ is the Witten-Laplacian operator with a $C^2$ function $\phi $. We also prove a monotonic result on the first eigenvalue of $-\Delta _\phi + \frac 14 (n/ (n-1))R$ along the Yamabe flow. Moreover, we establish some nondecreasing quantities for the first eigenvalue of $-\Delta _\phi +cR^a$ with $a\in (0,1)$ along the Yamabe flow.
We construct some nondecreasing quantities associated to the first eigenvalue of $-\Delta _\phi +cR$ $(c\geq \frac 12(n-2)/(n-1))$ along the Yamabe flow, where $\Delta _\phi $ is the Witten-Laplacian operator with a $C^2$ function $\phi $. We also prove a monotonic result on the first eigenvalue of $-\Delta _\phi + \frac 14 (n/ (n-1))R$ along the Yamabe flow. Moreover, we establish some nondecreasing quantities for the first eigenvalue of $-\Delta _\phi +cR^a$ with $a\in (0,1)$ along the Yamabe flow.
DOI : 10.21136/CMJ.2020.0392-19
Classification : 58C40
Keywords: monotonicity; first eigenvalue; Witten-Laplacian operator; Yamabe flow
@article{10_21136_CMJ_2020_0392_19,
     author = {Zhang, Liangdi},
     title = {Monotonicity of first eigenvalues along the {Yamabe} flow},
     journal = {Czechoslovak Mathematical Journal},
     pages = {387--401},
     year = {2021},
     volume = {71},
     number = {2},
     doi = {10.21136/CMJ.2020.0392-19},
     mrnumber = {4263176},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0392-19/}
}
TY  - JOUR
AU  - Zhang, Liangdi
TI  - Monotonicity of first eigenvalues along the Yamabe flow
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 387
EP  - 401
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0392-19/
DO  - 10.21136/CMJ.2020.0392-19
LA  - en
ID  - 10_21136_CMJ_2020_0392_19
ER  - 
%0 Journal Article
%A Zhang, Liangdi
%T Monotonicity of first eigenvalues along the Yamabe flow
%J Czechoslovak Mathematical Journal
%D 2021
%P 387-401
%V 71
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0392-19/
%R 10.21136/CMJ.2020.0392-19
%G en
%F 10_21136_CMJ_2020_0392_19
Zhang, Liangdi. Monotonicity of first eigenvalues along the Yamabe flow. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 387-401. doi: 10.21136/CMJ.2020.0392-19

[1] Cao, X.: Eigenvalues of $(-\Delta+\frac{R}{2})$ on manifolds with nonnegative curvature operator. Math. Ann. 337 (2007), 435-441. | DOI | MR | JFM

[2] Cao, X.: First eigenvalues of geometric operators under the Ricci flow. Proc. Am. Math. Soc. 136 (2008), 4075-4078. | DOI | MR | JFM

[3] Chow, B., Lu, P., Ni, L.: Hamilton's Ricci Flow. Graduate Studies in Mathematics 77. American Mathematical Society, Providence (2006). | DOI | MR | JFM

[4] Fang, S., Xu, H., Zhu, P.: Evolution and monotonicity of eigenvalues under the Ricci flow. Sci. China, Math. 58 (2015), 1737-1744. | DOI | MR | JFM

[5] Fang, S., Yang, F.: First eigenvalues of geometric operators under the Yamabe flow. Bull. Korean Math. Soc. 53 (2016), 1113-1122. | DOI | MR | JFM

[6] Fang, S., Yang, F., Zhu, P.: Eigenvalues of geometric operators related to the Witten Laplacian under the Ricci flow. Glasg. Math. J. 59 (2017), 743-751. | DOI | MR | JFM

[7] Guo, H., Philipowski, R., Thalmaier, A.: Entropy and lowest eigenvalue on evolving manifolds. Pac. J. Math. 264 (2013), 61-81. | DOI | MR | JFM

[8] Ho, P. T.: First eigenvalues of geometric operators under the Yamabe flow. Ann. Glob. Anal. Geom. 54 (2018), 449-472. | DOI | MR | JFM

[9] Kleiner, B., Lott, J.: Notes on Perelman's papers. Geom. Topol. 12 (2008), 2587-2858. | DOI | MR | JFM

[10] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. Available at , 39 pages. | arXiv | Zbl

[11] Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV: Analysis of Operators. Academic Press, New York (1978). | MR | JFM

[12] Topping, P.: Lectures on the Ricci Flow. London Mathematical Society Lecture Note Series 325. Cambridge University Press, Cambridge (2006). | DOI | MR | JFM

[13] Zhao, L.: The first eigenvalue of the Laplace operator under Yamabe flow. Math. Appl. 24 (2011), 274-278. | MR

[14] Zhao, L.: The first eigenvalue of the $p$-Laplace operator under powers of the $m$th mean curvature flow. Result. Math. 63 (2013), 937-948. | DOI | MR | JFM

[15] Zhao, L.: The first eigenvalue of the $p$-Laplace operator under powers of mean curvature flow. Math. Methods Appl. Sci. 37 (2014), 744-751. | DOI | MR | JFM

Cité par Sources :