Monotonicity of first eigenvalues along the Yamabe flow
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 387-401.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We construct some nondecreasing quantities associated to the first eigenvalue of $-\Delta _\phi +cR$ $(c\geq \frac 12(n-2)/(n-1))$ along the Yamabe flow, where $\Delta _\phi $ is the Witten-Laplacian operator with a $C^2$ function $\phi $. We also prove a monotonic result on the first eigenvalue of $-\Delta _\phi + \frac 14 (n/ (n-1))R$ along the Yamabe flow. Moreover, we establish some nondecreasing quantities for the first eigenvalue of $-\Delta _\phi +cR^a$ with $a\in (0,1)$ along the Yamabe flow.
DOI : 10.21136/CMJ.2020.0392-19
Classification : 58C40
Keywords: monotonicity; first eigenvalue; Witten-Laplacian operator; Yamabe flow
@article{10_21136_CMJ_2020_0392_19,
     author = {Zhang, Liangdi},
     title = {Monotonicity of first eigenvalues along the {Yamabe} flow},
     journal = {Czechoslovak Mathematical Journal},
     pages = {387--401},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2021},
     doi = {10.21136/CMJ.2020.0392-19},
     mrnumber = {4263176},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0392-19/}
}
TY  - JOUR
AU  - Zhang, Liangdi
TI  - Monotonicity of first eigenvalues along the Yamabe flow
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 387
EP  - 401
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0392-19/
DO  - 10.21136/CMJ.2020.0392-19
LA  - en
ID  - 10_21136_CMJ_2020_0392_19
ER  - 
%0 Journal Article
%A Zhang, Liangdi
%T Monotonicity of first eigenvalues along the Yamabe flow
%J Czechoslovak Mathematical Journal
%D 2021
%P 387-401
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0392-19/
%R 10.21136/CMJ.2020.0392-19
%G en
%F 10_21136_CMJ_2020_0392_19
Zhang, Liangdi. Monotonicity of first eigenvalues along the Yamabe flow. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 387-401. doi : 10.21136/CMJ.2020.0392-19. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0392-19/

Cité par Sources :