Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 373-386
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We study a class of typical Hartogs domains which is called a generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$. The generalized Fock-Bargmann-Hartogs domain is defined by inequality ${\rm e}^{\mu \|z\|^{2}}\sum _{j=1}^{m}|\omega _{j}|^{2p}1$, where $(z,\omega )\in \mathbb {C}^n\times \mathbb {C}^m$. In this paper, we will establish a rigidity of its holomorphic automorphism group. Our results imply that a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$ becomes a holomorphic automorphism if and only if it keeps the function $\sum _{j=1}^{m}|\omega _{j}|^{2p}{\rm e}^{\mu \|z\|^{2}}$ invariant.
We study a class of typical Hartogs domains which is called a generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$. The generalized Fock-Bargmann-Hartogs domain is defined by inequality ${\rm e}^{\mu \|z\|^{2}}\sum _{j=1}^{m}|\omega _{j}|^{2p}1$, where $(z,\omega )\in \mathbb {C}^n\times \mathbb {C}^m$. In this paper, we will establish a rigidity of its holomorphic automorphism group. Our results imply that a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$ becomes a holomorphic automorphism if and only if it keeps the function $\sum _{j=1}^{m}|\omega _{j}|^{2p}{\rm e}^{\mu \|z\|^{2}}$ invariant.
DOI :
10.21136/CMJ.2020.0364-19
Classification :
32H35
Keywords: generalized Fock-Bargmann-Hartogs domain; holomorphic automorphism group
Keywords: generalized Fock-Bargmann-Hartogs domain; holomorphic automorphism group
@article{10_21136_CMJ_2020_0364_19,
author = {Guo, Ting and Feng, Zhiming and Bi, Enchao},
title = {Rigidity of the holomorphic automorphism of the generalized {Fock-Bargmann-Hartogs} domains},
journal = {Czechoslovak Mathematical Journal},
pages = {373--386},
year = {2021},
volume = {71},
number = {2},
doi = {10.21136/CMJ.2020.0364-19},
mrnumber = {4263175},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0364-19/}
}
TY - JOUR AU - Guo, Ting AU - Feng, Zhiming AU - Bi, Enchao TI - Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains JO - Czechoslovak Mathematical Journal PY - 2021 SP - 373 EP - 386 VL - 71 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0364-19/ DO - 10.21136/CMJ.2020.0364-19 LA - en ID - 10_21136_CMJ_2020_0364_19 ER -
%0 Journal Article %A Guo, Ting %A Feng, Zhiming %A Bi, Enchao %T Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains %J Czechoslovak Mathematical Journal %D 2021 %P 373-386 %V 71 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0364-19/ %R 10.21136/CMJ.2020.0364-19 %G en %F 10_21136_CMJ_2020_0364_19
Guo, Ting; Feng, Zhiming; Bi, Enchao. Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 373-386. doi: 10.21136/CMJ.2020.0364-19
Cité par Sources :