Keywords: generalized Fock-Bargmann-Hartogs domain; holomorphic automorphism group
@article{10_21136_CMJ_2020_0364_19,
author = {Guo, Ting and Feng, Zhiming and Bi, Enchao},
title = {Rigidity of the holomorphic automorphism of the generalized {Fock-Bargmann-Hartogs} domains},
journal = {Czechoslovak Mathematical Journal},
pages = {373--386},
year = {2021},
volume = {71},
number = {2},
doi = {10.21136/CMJ.2020.0364-19},
mrnumber = {4263175},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0364-19/}
}
TY - JOUR AU - Guo, Ting AU - Feng, Zhiming AU - Bi, Enchao TI - Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains JO - Czechoslovak Mathematical Journal PY - 2021 SP - 373 EP - 386 VL - 71 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0364-19/ DO - 10.21136/CMJ.2020.0364-19 LA - en ID - 10_21136_CMJ_2020_0364_19 ER -
%0 Journal Article %A Guo, Ting %A Feng, Zhiming %A Bi, Enchao %T Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains %J Czechoslovak Mathematical Journal %D 2021 %P 373-386 %V 71 %N 2 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0364-19/ %R 10.21136/CMJ.2020.0364-19 %G en %F 10_21136_CMJ_2020_0364_19
Guo, Ting; Feng, Zhiming; Bi, Enchao. Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 373-386. doi: 10.21136/CMJ.2020.0364-19
[1] Ahn, H., Byun, J., Park, J.-D.: Automorphisms of the Hartogs type domains over classical symmetric domains. Int. J. Math. 23 (2012), Aticle ID 1250098, 11 pages. | DOI | MR | JFM
[2] Bi, E., Feng, Z., Tu, Z.: Balanced metrics on the Fock-Bargmann-Hartogs domains. Ann. Global Anal. Geom. 49 (2016), 349-359. | DOI | MR | JFM
[3] Bi, E., Tu, Z.: Rigidity of proper holomorphic mappings between generalized Fock-Bargmann-Hartogs domains. Pac. J. Math. 297 (2018), 277-297. | DOI | MR | JFM
[4] Dini, G., Primicerio, A. Selvaggi: Localization principle of automorphisms on generalized pseudoellipsoids. J. Geom. Anal. 7 (1997), 575-584. | DOI | MR | JFM
[5] Ishi, H., Kai, C.: The representative domain of a homogeneous bounded domain. Kyushu J. Math. 64 (2010), 35-47. | DOI | MR | JFM
[6] Kim, H., Ninh, V. T., Yamamori, A.: The automorphism group of a certain unbounded non-hyperbolic domain. J. Math. Anal. Appl. 409 (2014), 637-642. | DOI | MR | JFM
[7] Kodama, A.: On the holomorphic automorphism group of a generalized complex ellipsoid. Complex Var. Elliptic Equ. 59 (2014), 1342-1349. | DOI | MR | JFM
[8] Tu, Z.-H.: Rigidity of proper holomorphic mappings between equidimensional bounded symmetric domains. Proc. Am. Math. Soc. 130 (2002), 1035-1042. | DOI | MR | JFM
[9] Tu, Z., Wang, L.: Rigidity of proper holomorphic mappings between certain unbounded non-hyperbolic domains. J. Math. Anal. Appl. 419 (2014), 703-714. | DOI | MR | JFM
Cité par Sources :