Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 373-386.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study a class of typical Hartogs domains which is called a generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$. The generalized Fock-Bargmann-Hartogs domain is defined by inequality ${\rm e}^{\mu \|z\|^{2}}\sum _{j=1}^{m}|\omega _{j}|^{2p}1$, where $(z,\omega )\in \mathbb {C}^n\times \mathbb {C}^m$. In this paper, we will establish a rigidity of its holomorphic automorphism group. Our results imply that a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$ becomes a holomorphic automorphism if and only if it keeps the function $\sum _{j=1}^{m}|\omega _{j}|^{2p}{\rm e}^{\mu \|z\|^{2}}$ invariant.
DOI : 10.21136/CMJ.2020.0364-19
Classification : 32H35
Keywords: generalized Fock-Bargmann-Hartogs domain; holomorphic automorphism group
@article{10_21136_CMJ_2020_0364_19,
     author = {Guo, Ting and Feng, Zhiming and Bi, Enchao},
     title = {Rigidity of the holomorphic automorphism of the generalized {Fock-Bargmann-Hartogs} domains},
     journal = {Czechoslovak Mathematical Journal},
     pages = {373--386},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2021},
     doi = {10.21136/CMJ.2020.0364-19},
     mrnumber = {4263175},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0364-19/}
}
TY  - JOUR
AU  - Guo, Ting
AU  - Feng, Zhiming
AU  - Bi, Enchao
TI  - Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 373
EP  - 386
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0364-19/
DO  - 10.21136/CMJ.2020.0364-19
LA  - en
ID  - 10_21136_CMJ_2020_0364_19
ER  - 
%0 Journal Article
%A Guo, Ting
%A Feng, Zhiming
%A Bi, Enchao
%T Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains
%J Czechoslovak Mathematical Journal
%D 2021
%P 373-386
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0364-19/
%R 10.21136/CMJ.2020.0364-19
%G en
%F 10_21136_CMJ_2020_0364_19
Guo, Ting; Feng, Zhiming; Bi, Enchao. Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 373-386. doi : 10.21136/CMJ.2020.0364-19. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0364-19/

Cité par Sources :