Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 373-386
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study a class of typical Hartogs domains which is called a generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$. The generalized Fock-Bargmann-Hartogs domain is defined by inequality ${\rm e}^{\mu \|z\|^{2}}\sum _{j=1}^{m}|\omega _{j}|^{2p}1$, where $(z,\omega )\in \mathbb {C}^n\times \mathbb {C}^m$. In this paper, we will establish a rigidity of its holomorphic automorphism group. Our results imply that a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$ becomes a holomorphic automorphism if and only if it keeps the function $\sum _{j=1}^{m}|\omega _{j}|^{2p}{\rm e}^{\mu \|z\|^{2}}$ invariant.
We study a class of typical Hartogs domains which is called a generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$. The generalized Fock-Bargmann-Hartogs domain is defined by inequality ${\rm e}^{\mu \|z\|^{2}}\sum _{j=1}^{m}|\omega _{j}|^{2p}1$, where $(z,\omega )\in \mathbb {C}^n\times \mathbb {C}^m$. In this paper, we will establish a rigidity of its holomorphic automorphism group. Our results imply that a holomorphic self-mapping of the generalized Fock-Bargmann-Hartogs domain $D_{n,m}^{p}(\mu )$ becomes a holomorphic automorphism if and only if it keeps the function $\sum _{j=1}^{m}|\omega _{j}|^{2p}{\rm e}^{\mu \|z\|^{2}}$ invariant.
DOI : 10.21136/CMJ.2020.0364-19
Classification : 32H35
Keywords: generalized Fock-Bargmann-Hartogs domain; holomorphic automorphism group
@article{10_21136_CMJ_2020_0364_19,
     author = {Guo, Ting and Feng, Zhiming and Bi, Enchao},
     title = {Rigidity of the holomorphic automorphism of the generalized {Fock-Bargmann-Hartogs} domains},
     journal = {Czechoslovak Mathematical Journal},
     pages = {373--386},
     year = {2021},
     volume = {71},
     number = {2},
     doi = {10.21136/CMJ.2020.0364-19},
     mrnumber = {4263175},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0364-19/}
}
TY  - JOUR
AU  - Guo, Ting
AU  - Feng, Zhiming
AU  - Bi, Enchao
TI  - Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 373
EP  - 386
VL  - 71
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0364-19/
DO  - 10.21136/CMJ.2020.0364-19
LA  - en
ID  - 10_21136_CMJ_2020_0364_19
ER  - 
%0 Journal Article
%A Guo, Ting
%A Feng, Zhiming
%A Bi, Enchao
%T Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains
%J Czechoslovak Mathematical Journal
%D 2021
%P 373-386
%V 71
%N 2
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0364-19/
%R 10.21136/CMJ.2020.0364-19
%G en
%F 10_21136_CMJ_2020_0364_19
Guo, Ting; Feng, Zhiming; Bi, Enchao. Rigidity of the holomorphic automorphism of the generalized Fock-Bargmann-Hartogs domains. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 2, pp. 373-386. doi: 10.21136/CMJ.2020.0364-19

[1] Ahn, H., Byun, J., Park, J.-D.: Automorphisms of the Hartogs type domains over classical symmetric domains. Int. J. Math. 23 (2012), Aticle ID 1250098, 11 pages. | DOI | MR | JFM

[2] Bi, E., Feng, Z., Tu, Z.: Balanced metrics on the Fock-Bargmann-Hartogs domains. Ann. Global Anal. Geom. 49 (2016), 349-359. | DOI | MR | JFM

[3] Bi, E., Tu, Z.: Rigidity of proper holomorphic mappings between generalized Fock-Bargmann-Hartogs domains. Pac. J. Math. 297 (2018), 277-297. | DOI | MR | JFM

[4] Dini, G., Primicerio, A. Selvaggi: Localization principle of automorphisms on generalized pseudoellipsoids. J. Geom. Anal. 7 (1997), 575-584. | DOI | MR | JFM

[5] Ishi, H., Kai, C.: The representative domain of a homogeneous bounded domain. Kyushu J. Math. 64 (2010), 35-47. | DOI | MR | JFM

[6] Kim, H., Ninh, V. T., Yamamori, A.: The automorphism group of a certain unbounded non-hyperbolic domain. J. Math. Anal. Appl. 409 (2014), 637-642. | DOI | MR | JFM

[7] Kodama, A.: On the holomorphic automorphism group of a generalized complex ellipsoid. Complex Var. Elliptic Equ. 59 (2014), 1342-1349. | DOI | MR | JFM

[8] Tu, Z.-H.: Rigidity of proper holomorphic mappings between equidimensional bounded symmetric domains. Proc. Am. Math. Soc. 130 (2002), 1035-1042. | DOI | MR | JFM

[9] Tu, Z., Wang, L.: Rigidity of proper holomorphic mappings between certain unbounded non-hyperbolic domains. J. Math. Anal. Appl. 419 (2014), 703-714. | DOI | MR | JFM

Cité par Sources :