Avoidance principle and intersection property for a class of rings
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1191-1196.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a commutative ring with identity. If a ring $R$ is contained in an arbitrary union of rings, then $R$ is contained in one of them under various conditions. Similarly, if an arbitrary intersection of rings is contained in $R$, then $R$ contains one of them under various conditions.
DOI : 10.21136/CMJ.2020.0360-19
Classification : 13A99, 13B30
Keywords: intersection property; avoidance principle
@article{10_21136_CMJ_2020_0360_19,
     author = {Kumar, Rahul and Gaur, Atul},
     title = {Avoidance principle and intersection property for a class of rings},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1191--1196},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2020},
     doi = {10.21136/CMJ.2020.0360-19},
     mrnumber = {4181807},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0360-19/}
}
TY  - JOUR
AU  - Kumar, Rahul
AU  - Gaur, Atul
TI  - Avoidance principle and intersection property for a class of rings
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 1191
EP  - 1196
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0360-19/
DO  - 10.21136/CMJ.2020.0360-19
LA  - en
ID  - 10_21136_CMJ_2020_0360_19
ER  - 
%0 Journal Article
%A Kumar, Rahul
%A Gaur, Atul
%T Avoidance principle and intersection property for a class of rings
%J Czechoslovak Mathematical Journal
%D 2020
%P 1191-1196
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0360-19/
%R 10.21136/CMJ.2020.0360-19
%G en
%F 10_21136_CMJ_2020_0360_19
Kumar, Rahul; Gaur, Atul. Avoidance principle and intersection property for a class of rings. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1191-1196. doi : 10.21136/CMJ.2020.0360-19. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0360-19/

Cité par Sources :