On $p$-adic Euler constants
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 283-308.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The goal of this article is to associate a $p$-adic analytic function to the Euler constants $\gamma _p (a, F)$, study the properties of these functions in the neighborhood of $s=1$ and introduce a $p$-adic analogue of the infinite sum $\sum _{n \ge 1} f(n) / n$ for an algebraic valued, periodic function $f$. After this, we prove the theorem of Baker, Birch and Wirsing in this setup and discuss irrationality results associated to $p$-adic Euler constants generalising the earlier known results in this direction. Finally, we define and prove certain properties of $p$-adic Euler-Briggs constants analogous to the ones proved by Gun, Saha and Sinha.
DOI : 10.21136/CMJ.2020.0336-19
Classification : 11J91
Keywords: $p$-adic Euler-Lehmer constant; linear forms in logarithms
@article{10_21136_CMJ_2020_0336_19,
     author = {Bharadwaj, Abhishek},
     title = {On $p$-adic {Euler} constants},
     journal = {Czechoslovak Mathematical Journal},
     pages = {283--308},
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2021},
     doi = {10.21136/CMJ.2020.0336-19},
     mrnumber = {4226482},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0336-19/}
}
TY  - JOUR
AU  - Bharadwaj, Abhishek
TI  - On $p$-adic Euler constants
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 283
EP  - 308
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0336-19/
DO  - 10.21136/CMJ.2020.0336-19
LA  - en
ID  - 10_21136_CMJ_2020_0336_19
ER  - 
%0 Journal Article
%A Bharadwaj, Abhishek
%T On $p$-adic Euler constants
%J Czechoslovak Mathematical Journal
%D 2021
%P 283-308
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0336-19/
%R 10.21136/CMJ.2020.0336-19
%G en
%F 10_21136_CMJ_2020_0336_19
Bharadwaj, Abhishek. On $p$-adic Euler constants. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 283-308. doi : 10.21136/CMJ.2020.0336-19. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0336-19/

Cité par Sources :