On $p$-adic Euler constants
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 283-308
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The goal of this article is to associate a $p$-adic analytic function to the Euler constants $\gamma _p (a, F)$, study the properties of these functions in the neighborhood of $s=1$ and introduce a $p$-adic analogue of the infinite sum $\sum _{n \ge 1} f(n) / n$ for an algebraic valued, periodic function $f$. After this, we prove the theorem of Baker, Birch and Wirsing in this setup and discuss irrationality results associated to $p$-adic Euler constants generalising the earlier known results in this direction. Finally, we define and prove certain properties of $p$-adic Euler-Briggs constants analogous to the ones proved by Gun, Saha and Sinha.
DOI :
10.21136/CMJ.2020.0336-19
Classification :
11J91
Keywords: $p$-adic Euler-Lehmer constant; linear forms in logarithms
Keywords: $p$-adic Euler-Lehmer constant; linear forms in logarithms
@article{10_21136_CMJ_2020_0336_19,
author = {Bharadwaj, Abhishek},
title = {On $p$-adic {Euler} constants},
journal = {Czechoslovak Mathematical Journal},
pages = {283--308},
publisher = {mathdoc},
volume = {71},
number = {1},
year = {2021},
doi = {10.21136/CMJ.2020.0336-19},
mrnumber = {4226482},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0336-19/}
}
TY - JOUR AU - Bharadwaj, Abhishek TI - On $p$-adic Euler constants JO - Czechoslovak Mathematical Journal PY - 2021 SP - 283 EP - 308 VL - 71 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0336-19/ DO - 10.21136/CMJ.2020.0336-19 LA - en ID - 10_21136_CMJ_2020_0336_19 ER -
Bharadwaj, Abhishek. On $p$-adic Euler constants. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 283-308. doi: 10.21136/CMJ.2020.0336-19
Cité par Sources :