On $p$-adic Euler constants
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 283-308
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The goal of this article is to associate a $p$-adic analytic function to the Euler constants $\gamma _p (a, F)$, study the properties of these functions in the neighborhood of $s=1$ and introduce a $p$-adic analogue of the infinite sum $\sum _{n \ge 1} f(n) / n$ for an algebraic valued, periodic function $f$. After this, we prove the theorem of Baker, Birch and Wirsing in this setup and discuss irrationality results associated to $p$-adic Euler constants generalising the earlier known results in this direction. Finally, we define and prove certain properties of $p$-adic Euler-Briggs constants analogous to the ones proved by Gun, Saha and Sinha.
The goal of this article is to associate a $p$-adic analytic function to the Euler constants $\gamma _p (a, F)$, study the properties of these functions in the neighborhood of $s=1$ and introduce a $p$-adic analogue of the infinite sum $\sum _{n \ge 1} f(n) / n$ for an algebraic valued, periodic function $f$. After this, we prove the theorem of Baker, Birch and Wirsing in this setup and discuss irrationality results associated to $p$-adic Euler constants generalising the earlier known results in this direction. Finally, we define and prove certain properties of $p$-adic Euler-Briggs constants analogous to the ones proved by Gun, Saha and Sinha.
DOI : 10.21136/CMJ.2020.0336-19
Classification : 11J91
Keywords: $p$-adic Euler-Lehmer constant; linear forms in logarithms
@article{10_21136_CMJ_2020_0336_19,
     author = {Bharadwaj, Abhishek},
     title = {On $p$-adic {Euler} constants},
     journal = {Czechoslovak Mathematical Journal},
     pages = {283--308},
     year = {2021},
     volume = {71},
     number = {1},
     doi = {10.21136/CMJ.2020.0336-19},
     mrnumber = {4226482},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0336-19/}
}
TY  - JOUR
AU  - Bharadwaj, Abhishek
TI  - On $p$-adic Euler constants
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 283
EP  - 308
VL  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0336-19/
DO  - 10.21136/CMJ.2020.0336-19
LA  - en
ID  - 10_21136_CMJ_2020_0336_19
ER  - 
%0 Journal Article
%A Bharadwaj, Abhishek
%T On $p$-adic Euler constants
%J Czechoslovak Mathematical Journal
%D 2021
%P 283-308
%V 71
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0336-19/
%R 10.21136/CMJ.2020.0336-19
%G en
%F 10_21136_CMJ_2020_0336_19
Bharadwaj, Abhishek. On $p$-adic Euler constants. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 283-308. doi: 10.21136/CMJ.2020.0336-19

[1] Apostol, T. M.: Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics. Springer, New York (1976). | DOI | MR | JFM

[2] Baker, A., Birch, B. J., Wirsing, E. A.: On a problem of Chowla. J. Number Theory 5 (1973), 224-236. | DOI | MR | JFM

[3] Bharadwaj, A. T.: A short note on generalized Euler-Briggs constants. Int. J. Number Theory 16 (2020), 823-839. | DOI | MR | JFM

[4] Brumer, A.: On the units of algebraic number fields. Mathematika, Lond. 14 (1967), 121-124. | DOI | MR | JFM

[5] Chatterjee, T., Gun, S.: The digamma function, Euler-Lehmer constants and their $p$-adic counterparts. Acta Arith. 162 (2014), 197-208. | DOI | MR | JFM

[6] Cohen, H.: Number Theory. Volume II. Analytic and Modern Tools. Graduate Texts in Mathematics 240. Springer, New York (2007). | DOI | MR | JFM

[7] Diamond, J.: The $p$-adic log gamma function and $p$-adic Euler constants. Trans. Am. Math. Soc. 233 (1977), 321-337. | DOI | MR | JFM

[8] Gun, S., Murty, V. K., Saha, E.: Linear and algebraic independence of generalized Euler-Briggs constants. J. Number Theory 166 (2016), 117-136. | DOI | MR | JFM

[9] Gun, S., Saha, E., Sinha, S. B.: Transcendence of generalized Euler-Lehmer constants. J. Number Theory 145 (2014), 329-339. | DOI | MR | JFM

[10] Koblitz, N.: Interpretation of the $p$-adic log gamma function and Euler constants using the Bernoulli measure. Trans. Am. Math. Soc. 242 (1978), 261-269. | DOI | MR | JFM

[11] Kubota, T., Leopoldt, H. W.: Eine $p$-adische Theorie der Zetawerte. I. Einführung der $p$-adischen Dirichletschen $L$-Funktionen. J. Reine Angew. Math. 214/215 (1964), 328-339 German. | DOI | MR | JFM

[12] Lang, S.: Algebraic Number Theory. Graduate Texts in Mathematics 110. Springer, New York (1994). | DOI | MR | JFM

[13] Lehmer, D. H.: Euler constants for arithmetical progressions. Acta Arith. 27 (1975), 125-142. | DOI | MR | JFM

[14] Morita, Y.: A $p$-adic analogue of the $\Gamma$-function. J. Fac. Sci., Univ. Tokyo, Sect. I A 22 (1975), 255-266. | MR | JFM

[15] Morita, Y.: On the Hurwitz-Lerch $L$-functions. J. Fac. Sci., Univ. Tokyo, Sect. I A 24 (1977), 29-43. | MR | JFM

[16] Murty, M. R., Saradha, N.: Transcendental values of the digamma function. J. Number Theory 125 (2007), 298-318. | DOI | MR | JFM

[17] Murty, M. R., Pathak, S.: Special values of derivatives of $L$-series and generalized Stieltjes constants. Acta Arith. 184 (2018), 127-138. | DOI | MR | JFM

[18] Murty, M. R., Saradha, N.: Transcendental values of the $p$-adic digamma function. Acta Arith. 133 (2008), 349-362. | DOI | MR | JFM

[19] Okada, T.: Dirichlet series with periodic algebraic coefficients. J. Lond. Math. Soc., II. Ser. 33 (1986), 13-21. | DOI | MR | JFM

[20] Robert, A. M.: A Course in $p$-Adic Analysis. Graduate Texts in Mathematics 198. Springer, New York (2000). | DOI | MR | JFM

[21] Washington, L. C.: Introduction to Cyclotomic Fields. Graduate Texts in Mathematics 83. Springer, New York (1982). | DOI | MR | JFM

Cité par Sources :