On the Hilbert $2$-class field tower of some imaginary biquadratic number fields
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 269-281
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $\Bbbk =\mathbb {Q} \bigl (\sqrt 2, \sqrt d \bigr )$ be an imaginary bicyclic biquadratic number field, where $d$ is an odd negative square-free integer and $\Bbbk _2^{(2)}$ its second Hilbert $2$-class field. Denote by $G={\rm Gal}(\Bbbk _2^{(2)}/\Bbbk )$ the Galois group of $\Bbbk _2^{(2)}/\Bbbk $. The purpose of this note is to investigate the Hilbert $2$-class field tower of $\Bbbk $ and then deduce the structure of $G$.
Let $\Bbbk =\mathbb {Q} \bigl (\sqrt 2, \sqrt d \bigr )$ be an imaginary bicyclic biquadratic number field, where $d$ is an odd negative square-free integer and $\Bbbk _2^{(2)}$ its second Hilbert $2$-class field. Denote by $G={\rm Gal}(\Bbbk _2^{(2)}/\Bbbk )$ the Galois group of $\Bbbk _2^{(2)}/\Bbbk $. The purpose of this note is to investigate the Hilbert $2$-class field tower of $\Bbbk $ and then deduce the structure of $G$.
DOI : 10.21136/CMJ.2020.0333-19
Classification : 11R11, 11R27, 11R29, 11R37
Keywords: $2$-class group; imaginary biquadratic number field; capitulation; Hilbert $2$-class field
@article{10_21136_CMJ_2020_0333_19,
     author = {Chems-Eddin, Mohamed Mahmoud and Azizi, Abdelmalek and Zekhnini, Abdelkader and Jerrari, Idriss},
     title = {On the {Hilbert} $2$-class field tower of some imaginary biquadratic number fields},
     journal = {Czechoslovak Mathematical Journal},
     pages = {269--281},
     year = {2021},
     volume = {71},
     number = {1},
     doi = {10.21136/CMJ.2020.0333-19},
     mrnumber = {4226481},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0333-19/}
}
TY  - JOUR
AU  - Chems-Eddin, Mohamed Mahmoud
AU  - Azizi, Abdelmalek
AU  - Zekhnini, Abdelkader
AU  - Jerrari, Idriss
TI  - On the Hilbert $2$-class field tower of some imaginary biquadratic number fields
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 269
EP  - 281
VL  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0333-19/
DO  - 10.21136/CMJ.2020.0333-19
LA  - en
ID  - 10_21136_CMJ_2020_0333_19
ER  - 
%0 Journal Article
%A Chems-Eddin, Mohamed Mahmoud
%A Azizi, Abdelmalek
%A Zekhnini, Abdelkader
%A Jerrari, Idriss
%T On the Hilbert $2$-class field tower of some imaginary biquadratic number fields
%J Czechoslovak Mathematical Journal
%D 2021
%P 269-281
%V 71
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0333-19/
%R 10.21136/CMJ.2020.0333-19
%G en
%F 10_21136_CMJ_2020_0333_19
Chems-Eddin, Mohamed Mahmoud; Azizi, Abdelmalek; Zekhnini, Abdelkader; Jerrari, Idriss. On the Hilbert $2$-class field tower of some imaginary biquadratic number fields. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 269-281. doi: 10.21136/CMJ.2020.0333-19

[1] Azizi, A.: Unités de certains corps de nombres imaginaires et abéliens sur $\mathbb Q$. Ann. Sci. Math. Qué. 23 (1999), 15-21 French. | MR | JFM

[2] Azizi, A.: Sur les unités de certains corps de nombres de degré 8 sur $\mathbb Q$. Ann. Sci. Math. Qué. 29 (2005), 111-129 French. | MR | JFM

[3] Azizi, A., Benhamza, I.: Sur la capitulation des 2-classes d'idéaux de $\mathbb Q(\sqrt d, \sqrt{-2})$. Ann. Sci. Math. Qué. 29 (2005), 1-20 French. | MR | JFM

[4] Azizi, A., Chems-Eddin, M. M., Zekhnini, A.: On the rank of the 2-class group of some imaginary triquadratic number fields. Available at , 21 pages. | arXiv

[5] Azizi, A., Mouhib, A.: Capitulation des 2-classes d'idéaux de $\mathbb Q(\sqrt{2}, \sqrt{d})$ où $d$ est un entier naturel sans facteurs carrés. Acta Arith. 109 (2003), 27-63 French. | DOI | MR | JFM

[6] Azizi, A., Talbi, M.: Capitulation des 2-classes d'idéaux de certains corps biquadratiques cycliques. Acta Arith. 127 (2007), 231-248 French. | DOI | MR | JFM

[7] Azizi, A., Taous, M.: Capitulation des 2-classes d'idéaux de $k=\mathbb Q(\sqrt{2p},i)$. Acta Arith. 131 (2008), 103-123 French. | DOI | MR | JFM

[8] Conner, P. E., Hurrelbrink, J.: Class Number Parity. Series in Pure Mathematics 8. World Scientific, Singapore (1988). | DOI | MR | JFM

[9] Gorenstein, D.: Finite Groups. Harper's Series in Modern Mathematics. Harper and Row, New York (1968). | MR | JFM

[10] Gras, G.: Sur les $\ell$-classes d'idéaux dans les extensions cycliques rélatives de degré premier $\ell$. I. Ann. Inst. Fourier 23 (1973), 1-48 French. | DOI | MR | JFM

[11] Heider, F.-P., Schmithals, B.: Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen. J. Reine Angew. Math. 336 (1982), 1-25 German. | DOI | MR | JFM

[12] Ishida, M.: The Genus Fields of Algebraic Number Fields. Lecture Notes in Mathematics 555. Springer, Berlin (1976). | DOI | MR | JFM

[13] Kaplan, P.: Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2-groupe des classes est cyclique, et réciprocité biquadratique. J. Math. Soc. Japan 25 (1973), 596-608 French. | DOI | MR | JFM

[14] Kaplan, P.: Sur le 2-groupe des classes d'idéaux des corps quadratiques. J. Reine. Angew. Math. 283-284 (1976), 313-363 French. | DOI | MR | JFM

[15] Kisilevsky, H.: Number fields with class number congruent to $4 \pmod 8$ and Hilbert's Theorem 94. J. Number Theory 8 (1976), 271-279. | DOI | MR | JFM

[16] Kučera, R.: On the parity of the class number of a biquadratic field. J. Number Theory 52 (1995), 43-52. | DOI | MR | JFM

[17] Lemmermeyer, F.: Kuroda's class number formula. Acta Arith. 66 (1994), 245-260. | DOI | MR | JFM

[18] McCall, T. M., Parry, C. J., Ranalli, R. R.: Imaginary bicyclic biquadratic fields with cyclic 2-class group. J. Number Theory 53 (1995), 88-99. | DOI | MR | JFM

[19] Taussky, O.: A remark concerning Hilbert's Theorem 94. J. Reine Angew. Math. 239-240 (1969), 435-438. | DOI | MR | JFM

[20] Wada, H.: On the class number and the unit group of certain algebraic number fields. J. Fac. Sci., Univ. Tokyo, Sect. I 13 (1966), 201-209 \99999MR99999 0214565 \goodbreak. | MR | JFM

Cité par Sources :