Drinfeld doubles via derived Hall algebras and Bridgeland's Hall algebras
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 253-267
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let ${\cal A}$ be a finitary hereditary abelian category. We give a Hall algebra presentation of Kashaev's theorem on the relation between Drinfeld double and Heisenberg double. As applications, we obtain realizations of the Drinfeld double Hall algebra of ${\cal A}$ via its derived Hall algebra and Bridgeland's Hall algebra of $m$-cyclic complexes.
Let ${\cal A}$ be a finitary hereditary abelian category. We give a Hall algebra presentation of Kashaev's theorem on the relation between Drinfeld double and Heisenberg double. As applications, we obtain realizations of the Drinfeld double Hall algebra of ${\cal A}$ via its derived Hall algebra and Bridgeland's Hall algebra of $m$-cyclic complexes.
DOI : 10.21136/CMJ.2020.0313-19
Classification : 16G20, 17B20, 17B37
Keywords: Heisenberg double; Drinfeld double; derived Hall algebra; Bridgeland's Hall algebra
@article{10_21136_CMJ_2020_0313_19,
     author = {Xu, Fan and Zhang, Haicheng},
     title = {Drinfeld doubles via derived {Hall} algebras  and {Bridgeland's} {Hall} algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {253--267},
     year = {2021},
     volume = {71},
     number = {1},
     doi = {10.21136/CMJ.2020.0313-19},
     mrnumber = {4226480},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0313-19/}
}
TY  - JOUR
AU  - Xu, Fan
AU  - Zhang, Haicheng
TI  - Drinfeld doubles via derived Hall algebras  and Bridgeland's Hall algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 253
EP  - 267
VL  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0313-19/
DO  - 10.21136/CMJ.2020.0313-19
LA  - en
ID  - 10_21136_CMJ_2020_0313_19
ER  - 
%0 Journal Article
%A Xu, Fan
%A Zhang, Haicheng
%T Drinfeld doubles via derived Hall algebras  and Bridgeland's Hall algebras
%J Czechoslovak Mathematical Journal
%D 2021
%P 253-267
%V 71
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0313-19/
%R 10.21136/CMJ.2020.0313-19
%G en
%F 10_21136_CMJ_2020_0313_19
Xu, Fan; Zhang, Haicheng. Drinfeld doubles via derived Hall algebras  and Bridgeland's Hall algebras. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 253-267. doi: 10.21136/CMJ.2020.0313-19

[1] Bridgeland, T.: Quantum groups via Hall algebras of complexes. Ann. Math. (2) 177 (2013), 739-759. | DOI | MR | JFM

[2] Chen, Q., Deng, B.: Cyclic complexes, Hall polynomials and simple Lie algebras. J. Algebra 440 (2015), 1-32. | DOI | MR | JFM

[3] Green, J. A.: Hall algebras, hereditary algebras and quantum groups. Invent. Math. 120 (1995), 361-377. | DOI | MR | JFM

[4] Kapranov, M.: Eisenstein series and quantum affine algebras. J. Math. Sci., New York 84 (1997), 1311-1360. | DOI | MR | JFM

[5] Kapranov, M.: Heisenberg doubles and derived categories. J. Algebra 202 (1998), 712-744. | DOI | MR | JFM

[6] Kashaev, R. M.: The Heisenberg double and the pentagon relation. St. Petersbg. Math. J. 8 (1997), 585-592 translation from Algebra Anal. 8 1996 63-74. | MR | JFM

[7] Lin, J.: Modified Ringel-Hall algebras, naive lattice algebras and lattice algebras. Sci. China, Math. 63 (2020), 671-688. | DOI | MR | JFM

[8] Ringel, C. M.: Hall algebras. Topics in Algebra. Part 1. Rings and Representations of Algebras Banach Center Publications 26. PWN, Warsaw (1990), 433-447. | DOI | MR | JFM

[9] Ringel, C. M.: Hall algebras and quantum groups. Invent. Math. 101 (1990), 583-591. | DOI | MR | JFM

[10] Schiffmann, O.: Lectures on Hall algebras. Geometric Methods in Representation Theory II Société Mathématique de France, Paris (2012), 1-141. | MR | JFM

[11] Sheng, J., Xu, F.: Derived Hall algebras and lattice algebras. Algebra Colloq. 19 (2012), 533-538. | DOI | MR | JFM

[12] Toën, B.: Derived Hall algebras. Duke Math. J. 135 (2006), 587-615. | DOI | MR | JFM

[13] Xiao, J.: Drinfeld double and Ringel-Green theory of Hall algebras. J. Algebra 190 (1997), 100-144. | DOI | MR | JFM

[14] Xiao, J., Xu, F.: Hall algebras associated to triangulated categories. Duke Math. J. 143 (2008), 357-373. | DOI | MR | JFM

[15] Yanagida, S.: A note on Bridgeland's Hall algebra of two-periodic complexes. Math. Z. 282 (2016), 973-991. | DOI | MR | JFM

[16] Zhang, H.: A note on Bridgeland Hall algebras. Commun. Algebra 46 (2018), 2551-2560. | DOI | MR | JFM

[17] Zhang, H.: Bridgeland's Hall algebras and Heisenberg doubles. J. Algebra Appl. 17 (2018), Article ID 1850104, 12 pages. | DOI | MR | JFM

Cité par Sources :