Keywords: adjacency matrix; Laplacian matrix; normalized adjacency matrix; spectral radius; algebraic connectivity; Randić index
@article{10_21136_CMJ_2020_0290_19,
author = {Mehatari, Ranjit and Kannan, M. Rajesh},
title = {Eigenvalue bounds for some classes of matrices associated with graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {231--251},
year = {2021},
volume = {71},
number = {1},
doi = {10.21136/CMJ.2020.0290-19},
mrnumber = {4226479},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0290-19/}
}
TY - JOUR AU - Mehatari, Ranjit AU - Kannan, M. Rajesh TI - Eigenvalue bounds for some classes of matrices associated with graphs JO - Czechoslovak Mathematical Journal PY - 2021 SP - 231 EP - 251 VL - 71 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0290-19/ DO - 10.21136/CMJ.2020.0290-19 LA - en ID - 10_21136_CMJ_2020_0290_19 ER -
%0 Journal Article %A Mehatari, Ranjit %A Kannan, M. Rajesh %T Eigenvalue bounds for some classes of matrices associated with graphs %J Czechoslovak Mathematical Journal %D 2021 %P 231-251 %V 71 %N 1 %U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0290-19/ %R 10.21136/CMJ.2020.0290-19 %G en %F 10_21136_CMJ_2020_0290_19
Mehatari, Ranjit; Kannan, M. Rajesh. Eigenvalue bounds for some classes of matrices associated with graphs. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 231-251. doi: 10.21136/CMJ.2020.0290-19
[1] Banerjee, A., Mehatari, R.: An eigenvalue localization theorem for stochastic matrices and its application to Randić matrices. Linear Algebra Appl. 505 (2016), 85-96. | DOI | MR | JFM
[2] Bollobás, B., Erdös, P.: Graphs of extremal weights. Ars Comb. 50 (1998), 225-233. | MR | JFM
[3] Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications. American Elsevier, New York (1976). | MR | JFM
[4] Bozkurt, Ş. B., Güngör, A. D., Gutman, I., Çevik, A. S.: Randić matrix and Randić energy. MATCH Commun. Math. Comput. Chem. 64 (2010), 239-250. | MR | JFM
[5] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs. Universitext. Springer, Berlin (2012). | DOI | MR | JFM
[6] Butler, S., Chung, F.: Spectral graph theory. Handbook of Linear Algebra L. Hogben Discrete Mathematics and its Applications. CRC Press, Boca Raton (2014), Article ID 47. | MR | JFM
[7] Cavers, M. S.: The normalized Laplacian matrix and general Randić index of graphs: Ph.D. Thesis. University of Regina, Regina (2010). | MR
[8] Chung, F. R. K.: Spectral Graph Theory. Regional Conference Series in Mathematics 92. American Mathematical Society, Providence (1997). | MR | JFM
[9] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications. Pure and Applied Mathematics 87. Academic Press, New York (1980). | MR | JFM
[10] Das, K. C.: A sharp upper bound for the number of spanning trees of a graph. Graphs Comb. 23 (2007), 625-632. | DOI | MR | JFM
[11] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298-305. | DOI | MR | JFM
[12] Li, J., Guo, J-M., Shiu, W. C.: Bounds on normalized Laplacian eigenvalues of graphs. J. Inequal. Appl. 316 (2014), Article ID 316, 8 pages. | DOI | MR | JFM
[13] Marsli, R., Hall, F. J.: On bounding the eigenvalues of matrices with constant row-sums. Linear Multilinear Algebra 67 (2019), 672-684. | DOI | MR | JFM
[14] Randić, M.: Characterization of molecular branching. J. Am. Chem. Soc. 97 (1975), 6609-6615. | DOI
[15] Rojo, O., Soto, R. L.: A new upper bound on the largest normalized Laplacian eigenvalue. Oper. Matrices 7 (2013), 323-332. | DOI | MR | JFM
[16] Stanić, Z.: Inequalities for Graph Eigenvalues. London Mathematical Society Lecture Note Series 423. Cambridge University Press, Cambridge (2015). | DOI | MR | JFM
[17] Varga, R. S.: Geršgorin and His Circles. Springer Series in Computational Mathematics 36. Springer, Berlin (2004). | DOI | MR | JFM
[18] Wolkowicz, H., Styan, G. P. H.: Bounds for eigenvalues using traces. Linear Algebra Appl. 29 (1980), 471-506. | DOI | MR | JFM
Cité par Sources :