Eigenvalue bounds for some classes of matrices associated with graphs
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 231-251
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For a given complex square matrix $A$ with constant row sum, we establish two new eigenvalue inclusion sets. Using these bounds, first, we derive bounds for the second largest and the smallest eigenvalues of adjacency matrices of $k$-regular graphs. Then we establish some bounds for the second largest and the smallest eigenvalues of the normalized adjacency matrices of graphs and the second smallest and the largest eigenvalues of the Laplacian matrices of graphs. The sharpness of these bounds is verified by examples.
For a given complex square matrix $A$ with constant row sum, we establish two new eigenvalue inclusion sets. Using these bounds, first, we derive bounds for the second largest and the smallest eigenvalues of adjacency matrices of $k$-regular graphs. Then we establish some bounds for the second largest and the smallest eigenvalues of the normalized adjacency matrices of graphs and the second smallest and the largest eigenvalues of the Laplacian matrices of graphs. The sharpness of these bounds is verified by examples.
DOI : 10.21136/CMJ.2020.0290-19
Classification : 05C50
Keywords: adjacency matrix; Laplacian matrix; normalized adjacency matrix; spectral radius; algebraic connectivity; Randić index
@article{10_21136_CMJ_2020_0290_19,
     author = {Mehatari, Ranjit and Kannan, M. Rajesh},
     title = {Eigenvalue bounds for some classes of matrices associated with graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {231--251},
     year = {2021},
     volume = {71},
     number = {1},
     doi = {10.21136/CMJ.2020.0290-19},
     mrnumber = {4226479},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0290-19/}
}
TY  - JOUR
AU  - Mehatari, Ranjit
AU  - Kannan, M. Rajesh
TI  - Eigenvalue bounds for some classes of matrices associated with graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 231
EP  - 251
VL  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0290-19/
DO  - 10.21136/CMJ.2020.0290-19
LA  - en
ID  - 10_21136_CMJ_2020_0290_19
ER  - 
%0 Journal Article
%A Mehatari, Ranjit
%A Kannan, M. Rajesh
%T Eigenvalue bounds for some classes of matrices associated with graphs
%J Czechoslovak Mathematical Journal
%D 2021
%P 231-251
%V 71
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0290-19/
%R 10.21136/CMJ.2020.0290-19
%G en
%F 10_21136_CMJ_2020_0290_19
Mehatari, Ranjit; Kannan, M. Rajesh. Eigenvalue bounds for some classes of matrices associated with graphs. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 231-251. doi: 10.21136/CMJ.2020.0290-19

[1] Banerjee, A., Mehatari, R.: An eigenvalue localization theorem for stochastic matrices and its application to Randić matrices. Linear Algebra Appl. 505 (2016), 85-96. | DOI | MR | JFM

[2] Bollobás, B., Erdös, P.: Graphs of extremal weights. Ars Comb. 50 (1998), 225-233. | MR | JFM

[3] Bondy, J. A., Murty, U. S. R.: Graph Theory with Applications. American Elsevier, New York (1976). | MR | JFM

[4] Bozkurt, Ş. B., Güngör, A. D., Gutman, I., Çevik, A. S.: Randić matrix and Randić energy. MATCH Commun. Math. Comput. Chem. 64 (2010), 239-250. | MR | JFM

[5] Brouwer, A. E., Haemers, W. H.: Spectra of Graphs. Universitext. Springer, Berlin (2012). | DOI | MR | JFM

[6] Butler, S., Chung, F.: Spectral graph theory. Handbook of Linear Algebra L. Hogben Discrete Mathematics and its Applications. CRC Press, Boca Raton (2014), Article ID 47. | MR | JFM

[7] Cavers, M. S.: The normalized Laplacian matrix and general Randić index of graphs: Ph.D. Thesis. University of Regina, Regina (2010). | MR

[8] Chung, F. R. K.: Spectral Graph Theory. Regional Conference Series in Mathematics 92. American Mathematical Society, Providence (1997). | MR | JFM

[9] Cvetković, D., Doob, M., Sachs, H.: Spectra of Graphs: Theory and Applications. Pure and Applied Mathematics 87. Academic Press, New York (1980). | MR | JFM

[10] Das, K. C.: A sharp upper bound for the number of spanning trees of a graph. Graphs Comb. 23 (2007), 625-632. | DOI | MR | JFM

[11] Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23 (1973), 298-305. | DOI | MR | JFM

[12] Li, J., Guo, J-M., Shiu, W. C.: Bounds on normalized Laplacian eigenvalues of graphs. J. Inequal. Appl. 316 (2014), Article ID 316, 8 pages. | DOI | MR | JFM

[13] Marsli, R., Hall, F. J.: On bounding the eigenvalues of matrices with constant row-sums. Linear Multilinear Algebra 67 (2019), 672-684. | DOI | MR | JFM

[14] Randić, M.: Characterization of molecular branching. J. Am. Chem. Soc. 97 (1975), 6609-6615. | DOI

[15] Rojo, O., Soto, R. L.: A new upper bound on the largest normalized Laplacian eigenvalue. Oper. Matrices 7 (2013), 323-332. | DOI | MR | JFM

[16] Stanić, Z.: Inequalities for Graph Eigenvalues. London Mathematical Society Lecture Note Series 423. Cambridge University Press, Cambridge (2015). | DOI | MR | JFM

[17] Varga, R. S.: Geršgorin and His Circles. Springer Series in Computational Mathematics 36. Springer, Berlin (2004). | DOI | MR | JFM

[18] Wolkowicz, H., Styan, G. P. H.: Bounds for eigenvalues using traces. Linear Algebra Appl. 29 (1980), 471-506. | DOI | MR | JFM

Cité par Sources :