Exponent of class group of certain imaginary quadratic fields
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1167-1178
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $n>1$ be an odd integer. We prove that there are infinitely many imaginary quadratic fields of the form $\mathbb {Q} \bigl (\sqrt {x^2-2y^n} \bigr )$ whose ideal class group has an element of order $n$. This family gives a counterexample to a conjecture by H. Wada (1970) on the structure of ideal class groups.
Let $n>1$ be an odd integer. We prove that there are infinitely many imaginary quadratic fields of the form $\mathbb {Q} \bigl (\sqrt {x^2-2y^n} \bigr )$ whose ideal class group has an element of order $n$. This family gives a counterexample to a conjecture by H. Wada (1970) on the structure of ideal class groups.
DOI : 10.21136/CMJ.2020.0289-19
Classification : 11R11, 11R29
Keywords: quadratic field; discriminant; class group; Wada's conjecture
@article{10_21136_CMJ_2020_0289_19,
     author = {Chakraborty, Kalyan and Hoque, Azizul},
     title = {Exponent of class group of certain imaginary quadratic fields},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1167--1178},
     year = {2020},
     volume = {70},
     number = {4},
     doi = {10.21136/CMJ.2020.0289-19},
     mrnumber = {4181805},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0289-19/}
}
TY  - JOUR
AU  - Chakraborty, Kalyan
AU  - Hoque, Azizul
TI  - Exponent of class group of certain imaginary quadratic fields
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 1167
EP  - 1178
VL  - 70
IS  - 4
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0289-19/
DO  - 10.21136/CMJ.2020.0289-19
LA  - en
ID  - 10_21136_CMJ_2020_0289_19
ER  - 
%0 Journal Article
%A Chakraborty, Kalyan
%A Hoque, Azizul
%T Exponent of class group of certain imaginary quadratic fields
%J Czechoslovak Mathematical Journal
%D 2020
%P 1167-1178
%V 70
%N 4
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0289-19/
%R 10.21136/CMJ.2020.0289-19
%G en
%F 10_21136_CMJ_2020_0289_19
Chakraborty, Kalyan; Hoque, Azizul. Exponent of class group of certain imaginary quadratic fields. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1167-1178. doi: 10.21136/CMJ.2020.0289-19

[1] Ankeny, N. C., Chowla, S.: On the divisibility of the class number of quadratic fields. Pac. J. Math. 5 (1955), 321-324. | DOI | MR | JFM

[2] Chakraborty, K., Hoque, A.: Class groups of imaginary quadratic fields of 3-rank at least 2. Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Comput. 47 (2018), 179-183. | MR | JFM

[3] Chakraborty, K., Hoque, A., Kishi, Y., Pandey, P. P.: Divisibility of the class numbers of imaginary quadratic fields. J. Number Theory 185 (2018), 339-348. | DOI | MR | JFM

[4] Chakraborty, K., Hoque, A., Sharma, R.: Divisibility of class numbers of quadratic fields: Qualitative aspects. Advances in Mathematical Inequalities and Applications Trends in Mathematics. Birkhäuser, Singapore (2018), 247-264. | DOI | MR | JFM

[5] Cohn, J. H. E.: On the class number of certain imaginary quadratic fields. Proc. Am. Math. Soc. 130 (2002), 1275-1277. | DOI | MR | JFM

[6] Gross, B. H., Rohrlich, D. E.: Some results on the Mordell-Weil group of the Jacobian of the Fermat curve. Invent. Math. 44 (1978), 201-224. | DOI | MR | JFM

[7] Hoque, A., Chakraborty, K.: Divisibility of class numbers of certain families of quadratic fields. J. Ramanujan Math. Soc. 34 (2019), 281-289. | MR

[8] Hoque, A., Saikia, H. K.: On the divisibility of class numbers of quadratic fields and the solvability of Diophantine equations. SeMA J. 73 (2016), 213-217. | DOI | MR | JFM

[9] Ishii, K.: On the divisibility of the class number of imaginary quadratic fields. Proc. Japan Acad., Ser. A 87 (2011), 142-143. | DOI | MR | JFM

[10] Ito, A.: A note on the divisibility of class numbers of imaginary quadratic fields $\mathbb{Q}(\sqrt{a^2-k^n})$. Proc. Japan Acad., Ser. A 87 (2011), 151-155. | DOI | MR | JFM

[11] Ito, A.: Remarks on the divisibility of the class numbers of imaginary quadratic fields $\mathbb{Q}(\sqrt{2^{2k}-q^n})$. Glasg. Math. J. 53 (2011), 379-389. | DOI | MR | JFM

[12] Ito, A.: Notes on the divisibility of the class numbers of imaginary quadratic fields $\mathbb{Q}(\sqrt{3^{2e}-4k^n})$. Abh. Math. Semin. Univ. Hamb. 85 (2015), 1-21. | DOI | MR | JFM

[13] Kishi, Y.: Note on the divisibility of the class number of certain imaginary quadratic fields. Glasg. Math. J. 51 (2009), 187-191 corrigendum ibid. 52 2010 207-208. | DOI | MR | JFM

[14] Louboutin, S. R.: On the divisibility of the class number of imaginary quadratic number fields. Proc. Am. Math. Soc. 137 (2009), 4025-4028. | DOI | MR | JFM

[15] Murty, M. R.: The $abc$ conjecture and exponents of class groups of quadratic fields. Number Theory. Proceedings of the International Conference on Discrete Mathematics and Number Theory Contemporary Mathematics 210. American Mathematical Society, Providence (1998), 85-95. | DOI | MR | JFM

[16] Murty, M. R.: Exponents of class groups of quadratic fields. Topics in Number Theory Mathematics and Its Applications 467. Kluwer Academic Publishers, Dordrecht (1999), 229-239. | DOI | MR | JFM

[17] Nagell, T.: Über die Klassenzahl imaginär-quadratischer Zählkörper. Abh. Math. Semin. Univ. Hamb. 1 (1922), 140-150 German \99999JFM99999 48.0170.03. | DOI | MR

[18] Soundararajan, K.: Divisibility of class numbers of imaginary quadratic fields. J. Lond. Math. Soc., II. Ser. 61 (2000), 681-690. | DOI | MR | JFM

[19] Group, The PARI: PARI/GP, version 2.9.0. University Bordeaux (2016), Available at http://pari.math.u-bordeaux.fr

[20] Wada, H.: A table of ideal class groups of imaginary quadratic fields. Proc. Japan Acad. 46 (1970), 401-403. | DOI | MR | JFM

[21] Zhu, M., Wang, T.: The divisibility of the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{2^{2m}-k^n})$. Glasg. Math. J. 54 (2012), 149-154. | DOI | MR | JFM

Cité par Sources :