Exponent of class group of certain imaginary quadratic fields
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1167-1178.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $n>1$ be an odd integer. We prove that there are infinitely many imaginary quadratic fields of the form $\mathbb {Q} \bigl (\sqrt {x^2-2y^n} \bigr )$ whose ideal class group has an element of order $n$. This family gives a counterexample to a conjecture by H. Wada (1970) on the structure of ideal class groups.
DOI : 10.21136/CMJ.2020.0289-19
Classification : 11R11, 11R29
Keywords: quadratic field; discriminant; class group; Wada's conjecture
@article{10_21136_CMJ_2020_0289_19,
     author = {Chakraborty, Kalyan and Hoque, Azizul},
     title = {Exponent of class group of certain imaginary quadratic fields},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1167--1178},
     publisher = {mathdoc},
     volume = {70},
     number = {4},
     year = {2020},
     doi = {10.21136/CMJ.2020.0289-19},
     mrnumber = {4181805},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0289-19/}
}
TY  - JOUR
AU  - Chakraborty, Kalyan
AU  - Hoque, Azizul
TI  - Exponent of class group of certain imaginary quadratic fields
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 1167
EP  - 1178
VL  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0289-19/
DO  - 10.21136/CMJ.2020.0289-19
LA  - en
ID  - 10_21136_CMJ_2020_0289_19
ER  - 
%0 Journal Article
%A Chakraborty, Kalyan
%A Hoque, Azizul
%T Exponent of class group of certain imaginary quadratic fields
%J Czechoslovak Mathematical Journal
%D 2020
%P 1167-1178
%V 70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0289-19/
%R 10.21136/CMJ.2020.0289-19
%G en
%F 10_21136_CMJ_2020_0289_19
Chakraborty, Kalyan; Hoque, Azizul. Exponent of class group of certain imaginary quadratic fields. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 4, pp. 1167-1178. doi : 10.21136/CMJ.2020.0289-19. http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0289-19/

Cité par Sources :