Carleson measures and Toeplitz operators on small Bergman spaces on the ball
Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 211-229
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We study Carleson measures and Toeplitz operators on the class of so-called small weighted Bergman spaces, introduced recently by Seip. A characterization of Carleson measures is obtained which extends Seip's results from the unit disk of $\mathbb {C}$ to the unit ball of $\mathbb {C}^n$. We use this characterization to give necessary and sufficient conditions for the boundedness and compactness of Toeplitz operators. Finally, we study the Schatten $p$ classes membership of Toeplitz operators for $1
We study Carleson measures and Toeplitz operators on the class of so-called small weighted Bergman spaces, introduced recently by Seip. A characterization of Carleson measures is obtained which extends Seip's results from the unit disk of $\mathbb {C}$ to the unit ball of $\mathbb {C}^n$. We use this characterization to give necessary and sufficient conditions for the boundedness and compactness of Toeplitz operators. Finally, we study the Schatten $p$ classes membership of Toeplitz operators for $1$.
DOI : 10.21136/CMJ.2020.0265-19
Classification : 30H20, 47B35
Keywords: Bergman space; Carleson measure; Toeplitz operator; Schatten classes
@article{10_21136_CMJ_2020_0265_19,
     author = {Le, Van An},
     title = {Carleson measures and {Toeplitz} operators  on small {Bergman} spaces on the ball},
     journal = {Czechoslovak Mathematical Journal},
     pages = {211--229},
     year = {2021},
     volume = {71},
     number = {1},
     doi = {10.21136/CMJ.2020.0265-19},
     mrnumber = {4226478},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0265-19/}
}
TY  - JOUR
AU  - Le, Van An
TI  - Carleson measures and Toeplitz operators  on small Bergman spaces on the ball
JO  - Czechoslovak Mathematical Journal
PY  - 2021
SP  - 211
EP  - 229
VL  - 71
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0265-19/
DO  - 10.21136/CMJ.2020.0265-19
LA  - en
ID  - 10_21136_CMJ_2020_0265_19
ER  - 
%0 Journal Article
%A Le, Van An
%T Carleson measures and Toeplitz operators  on small Bergman spaces on the ball
%J Czechoslovak Mathematical Journal
%D 2021
%P 211-229
%V 71
%N 1
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0265-19/
%R 10.21136/CMJ.2020.0265-19
%G en
%F 10_21136_CMJ_2020_0265_19
Le, Van An. Carleson measures and Toeplitz operators  on small Bergman spaces on the ball. Czechoslovak Mathematical Journal, Tome 71 (2021) no. 1, pp. 211-229. doi: 10.21136/CMJ.2020.0265-19

[1] Arroussi, H., Park, I., Pau, J.: Schatten class Toeplitz operators acting on large weighted Bergman spaces. Stud. Math. 229 (2015), 203-221. | DOI | MR | JFM

[2] Carleson, L.: An interpolation problem for bounded analytic functions. Am. J. Math. 80 (1958), 921-930. | DOI | MR | JFM

[3] Carleson, L.: Interpolations by bounded analytic functions and the corona problem. Ann. Math. 76 (1962), 547-559. | DOI | MR | JFM

[4] Hastings, W. W.: A Carleson measure theorem for Bergman spaces. Proc. Am. Math. Soc. 52 (1975), 237-241. | DOI | MR | JFM

[5] Lin, P., Rochberg, R.: Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type weights. Pac. J. Math. 173 (1996), 127-146. | DOI | MR | JFM

[6] Luecking, D.: A technique for characterizing Carleson measures on Bergman spaces. Proc. Am. Math. Soc. 87 (1983), 656-660. | DOI | MR | JFM

[7] Luecking, D.: Trace ideal criteria for Toeplitz operators. J. Func. Anal. 73 (1987), 345-368. | DOI | MR | JFM

[8] Pau, J., Zhao, R.: Carleson measures and Toeplitz operators for weighted Bergman spaces on the unit ball. Mich. Math. J. 64 (2015), 759-796. | DOI | MR | JFM

[9] Peláez, J. Á., Rättyä, J.: Weighted Bergman spaces induced by rapidly increasing weights. Mem. Am. Math. Soc. 227 (2014), 124 pages. | DOI | MR | JFM

[10] Peláez, J. Á., Rättyä, J.: Embedding theorems for Bergman spaces via harmonic analysis. Math. Ann. 362 (2015), 205-239. | DOI | MR | JFM

[11] Peláez, J. Á., Rättyä, J.: Trace class criteria for Toeplitz and composition operators on small Bergman spaces. Adv. Math. 293 (2016), 606-643. | DOI | MR | JFM

[12] Peláez, J. Á., Rättyä, J., Sierra, K.: Berezin transform and Toeplitz operators on Bergman spaces induced by regular weights. J. Geom. Anal. 28 (2018), 656-687. | DOI | MR | JFM

[13] Seip, K.: Interpolation and sampling in small Bergman spaces. Collect. Math. 64 (2013), 61-72. | DOI | MR | JFM

[14] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226, Springer, New York (2005). | DOI | MR | JFM

[15] Zhu, K.: Operator Theory in Function Spaces. Mathematical Surveys and Monographs 138, American Mathematical Society, Providence (2007). | DOI | MR | JFM

Cité par Sources :