H-conformal anti-invariant submersions from almost quaternionic Hermitian manifolds
Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 631-656
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We introduce the notions of h-conformal anti-invariant submersions and h-conformal Lagrangian submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds as a generalization of Riemannian submersions, horizontally conformal submersions, anti-invariant submersions, h-anti-invariant submersions, h-Lagrangian submersion, conformal anti-invariant submersions. We investigate their properties: the integrability of distributions, the geometry of foliations, the conditions for such maps to be totally geodesic, etc. Finally, we give some examples of such maps.
We introduce the notions of h-conformal anti-invariant submersions and h-conformal Lagrangian submersions from almost quaternionic Hermitian manifolds onto Riemannian manifolds as a generalization of Riemannian submersions, horizontally conformal submersions, anti-invariant submersions, h-anti-invariant submersions, h-Lagrangian submersion, conformal anti-invariant submersions. We investigate their properties: the integrability of distributions, the geometry of foliations, the conditions for such maps to be totally geodesic, etc. Finally, we give some examples of such maps.
DOI : 10.21136/CMJ.2020.0264-18
Classification : 53C15, 53C26, 53C43
Keywords: horizontally conformal submersion; quaternionic manifold; totally geodesic
@article{10_21136_CMJ_2020_0264_18,
     author = {Park, Kwang Soon},
     title = {H-conformal anti-invariant submersions from almost quaternionic {Hermitian} manifolds},
     journal = {Czechoslovak Mathematical Journal},
     pages = {631--656},
     year = {2020},
     volume = {70},
     number = {3},
     doi = {10.21136/CMJ.2020.0264-18},
     mrnumber = {4151696},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0264-18/}
}
TY  - JOUR
AU  - Park, Kwang Soon
TI  - H-conformal anti-invariant submersions from almost quaternionic Hermitian manifolds
JO  - Czechoslovak Mathematical Journal
PY  - 2020
SP  - 631
EP  - 656
VL  - 70
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0264-18/
DO  - 10.21136/CMJ.2020.0264-18
LA  - en
ID  - 10_21136_CMJ_2020_0264_18
ER  - 
%0 Journal Article
%A Park, Kwang Soon
%T H-conformal anti-invariant submersions from almost quaternionic Hermitian manifolds
%J Czechoslovak Mathematical Journal
%D 2020
%P 631-656
%V 70
%N 3
%U http://geodesic.mathdoc.fr/articles/10.21136/CMJ.2020.0264-18/
%R 10.21136/CMJ.2020.0264-18
%G en
%F 10_21136_CMJ_2020_0264_18
Park, Kwang Soon. H-conformal anti-invariant submersions from almost quaternionic Hermitian manifolds. Czechoslovak Mathematical Journal, Tome 70 (2020) no. 3, pp. 631-656. doi: 10.21136/CMJ.2020.0264-18

[1] Akyol, M. A., Şahin, B.: Conformal anti-invariant submersions from almost Hermitian manifolds. Turk. J. Math. 40 (2016), 43-70. | DOI | MR | JFM

[2] Alekseevsky, D. V., Marchiafava, S.: Almost complex submanifolds of quaternionic manifolds. Steps in Differential Geometry Institute of Mathematics and Informatics, University of Debrecen, Debrecen (2001), 23-38. | MR | JFM

[3] Baird, P., Wood, J. C.: Harmonic Morphisms between Riemannian Manifolds. London Mathematical Society Monographs. New Series 29. Oxford University Press, Oxford (2003). | DOI | MR | JFM

[4] Besse, A. L.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge 10. Springer, Berlin (1987). | DOI | MR | JFM

[5] Bourguignon, J.-P.: A mathematician's visit to Kaluza-Klein theory. Rend. Semin. Mat., Torino Special Issue (1989), 143-163. | MR | JFM

[6] J.-P. Bourguignon, H. B. Lawson, Jr.: Stability and isolation phenomena for Yang-Mills fields. Commum. Math. Phys. 79 (1981), 189-230. | DOI | MR | JFM

[7] Chen, B.-Y.: Geometry of Slant Submanifolds. Katholieke Universiteit Leuven, Leuven (1990). | MR | JFM

[8] Cortés, V., Mayer, C., Mohaupt, T., Saueressig, F.: Special geometry of Euclidean supersymmetry. I. Vector multiplets. J. High Energy Phys. 2004 (2004), Article ID 028, 73 pages. | DOI | MR

[9] Falcitelli, M., Ianus, S., Pastore, A. M.: Riemannian Submersions and Related Topics. World Scientific, River Edge (2004). | DOI | MR | JFM

[10] Fuglede, B.: Harmonic morphisms between Riemannian manifolds. Ann. Inst. Fourier 28 (1978), 107-144. | DOI | MR | JFM

[11] Gray, A.: Pseudo-Riemannian almost product manifolds and submersions. J. Math. Mech. 16 (1967), 715-737. | DOI | MR | JFM

[12] Gudmundsson, S.: The Geometry of Harmonic Morphisms. Ph.D. Thesis. University of Leeds, Leeds (1992), Available at http://www.matematik.lu.se/matematiklu/personal/sigma/Doctoral-thesis.pdf | MR

[13] Gudmundsson, S., Wood, J. C.: Harmonic morphisms between almost Hermitian manifolds. Boll. Unione Mat. Ital., VII. Ser., B 11 (1997), 185-197. | MR | JFM

[14] Ianuş, S., Mazzocco, R., Vîlcu, G. E.: Riemannian submersions from quaternionic manifolds. Acta. Appl. Math. 104 (2008), 83-89. | DOI | MR | JFM

[15] Ianuş, S., Vişinescu, M.: Kaluza-Klein theory with scalar fields and generalized Hopf manifolds. Classical Quantum Gravity 4 (1987), 1317-1325. | DOI | MR | JFM

[16] Ianuş, S., Vişinescu, M.: Space-time compactification and Riemannian submersions. The Mathematical Heritage of C. F. Gauss World Scientific, River Edge (1991), 358-371. | DOI | MR | JFM

[17] Ishihara, T.: A mapping of Riemannian manifolds which preserves harmonic functions. J. Math. Kyoto Univ. 19 (1979), 215-229. | DOI | MR | JFM

[18] Jin, D. H., Lee, J. W.: Conformal anti-invariant submersions from hyper-Kähler manifolds. JP J. Geom. Topol. 19 (2016), 161-183. | DOI | JFM

[19] Mustafa, M. T.: Applications of harmonic morphisms to gravity. J. Math. Phys. 41 (2000), 6918-6929. | DOI | MR | JFM

[20] O'Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13 (1966), 459-469. | DOI | MR | JFM

[21] Park, K.-S.: H-semi-invariant submersions. Taiwanese J. Math. 16 (2012), 1865-1878. | DOI | MR | JFM

[22] Park, K.-S.: Almost h-conformal semi-invariant submersions from almost quaternionic Hermitian manifolds. (to appear) in Hacet. J. Math. Stat. | DOI | MR

[23] Park, K.-S.: H-anti-invariant submersions from almost quaternionic Hermitian manifolds. Czech. Math. J. 67 (2017), 557-578. | DOI | MR | JFM

[24] Park, K.-S., Prasad, R.: Semi-slant submersions. Bull. Korean Math. Soc. 50 (2013), 951-962. | DOI | MR | JFM

[25] Ponge, R., Reckziegel, H.: Twisted products in pseudo-Riemannian geometry. Geom. Dedicata 48 (1993), 15-25. | DOI | MR | JFM

[26] Şahin, B.: Anti-invariant Riemannian submersions from almost Hermitian manifolds. Cent. Eur. J. Math. 8 (2010), 437-447. | DOI | MR | JFM

[27] Şahin, B.: Slant submersions from almost Hermitian manifolds. Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 54 (2011), 93-105. | MR | JFM

[28] Şahin, B.: Riemannian submersions from almost Hermitian manifolds. Taiwanese J. Math. 17 (2013), 629-659. | DOI | MR | JFM

[29] Şahin, B.: Semi-invariant submersions from almost Hermitian manifolds. Can. Math. Bull. 56 (2013), 173-183. | DOI | MR | JFM

[30] Urakawa, H.: Calculus of Variations and Harmonic Maps. Translations of Mathematical Monographs 132. American Mathematical Society, Providence (1993). | DOI | MR | JFM

[31] Watson, B.: Almost Hermitian submersions. J. Differ. Geom. 11 (1976), 147-165. | DOI | MR | JFM

[32] Watson, B.: $G,G'$-Riemannian submersions and nonlinear gauge field equations of general relativity. Global Analysis - Analysis on Manifolds Teubner Texts in Mathematics 57. Teubner, Leipzig (1983), 324-349. | MR | JFM

Cité par Sources :